
Predictive Maintenance Toolbox™
Reference

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Predictive Maintenance Toolbox™ Reference
© COPYRIGHT 2018–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2018 Online only New for Version 1.0 (Release 2018a)
September 2018 Online only Revised for Version 1.1 (Release 2018b)
March 2019 Online only Revised for Version 2.0 (Release 2019a)
September 2019 Online only Revised for Version 2.1 (Release 2019b)
March 2020 Online only Revised for Version 2.2 (Release 2020a)
September 2020 Online only Revised for Version 2.2.1 (Release 2020b)
March 2021 Online only Revised for Version 2.3 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions
1

Objects
2

iii

Contents

Functions

1

approximateEntropy
Measure of regularity of nonlinear time series

Syntax
approxEnt = approximateEntropy(X)
approxEnt = approximateEntropy(X,lag)
approxEnt = approximateEntropy(X,[],dim)
approxEnt = approximateEntropy(X,lag,dim)
approxEnt = approximateEntropy(___ ,Name,Value)

Description
approxEnt = approximateEntropy(X) estimates the approximate entropy of the uniformly
sampled time-domain signal X by reconstructing the phase space. Approximate entropy is a measure
to quantify the amount of regularity and unpredictability of fluctuations over a time series.

approxEnt = approximateEntropy(X,lag) estimates the approximate entropy for the time
delay lag.

approxEnt = approximateEntropy(X,[],dim) estimates the approximate entropy for the
embedding dimension dim.

approxEnt = approximateEntropy(X,lag,dim) estimates the approximate entropy for the time
delay lag and the embedding dimension dim.

approxEnt = approximateEntropy(___ ,Name,Value) estimates the approximate entropy with
additional options specified by one or more Name,Value pair arguments.

Examples

Compute Approximate Entropy of Signals

For this example, generate two signals for comparison − a random signal xRand and a perfectly
regular signal xReg. Set rng to default for reproducibility of the random signal.

rng('default');
xRand = double(randn(100,1)>0);
xReg = repmat([1;0],50,1);

Visualize the random and regular signals.

figure;
subplot(2,1,1);
plot(xRand);
title('Random signal');
subplot(2,1,2);
plot(xReg);
title('Perfectly regular signal');

1 Functions

1-2

The plots show that the regular signal is more predictable than the random signal.

Find approximate entropy of the two signals.

valueReg = approximateEntropy(xReg)

valueReg = 5.1016e-05

valueIrreg = approximateEntropy(xRand)

valueIrreg = 0.6849

The approximate entropy of the perfectly regular signal is significantly smaller than the random
signal. Hence, the perfectly regular signal containing many repetitive patterns has a relatively small
value of approximate entropy while the less predictable random signal has a higher value of
approximate entropy.

Find Approximate Entropy of Data

In this example, consider the position data of a quadcopter, following a circular path. The file
uavPositionData.mat contains the x, y and z-direction position data traversed by the copter.

Load the data set and visualize the quadcopter path in 3D.

 approximateEntropy

1-3

load('uavPositionData.mat','xv','yv','zv');
plot3(xv,yv,zv);

For this example, use only x-direction position data for computation. Since Lag is unknown, estimate
the delay using phaseSpaceReconstruction. Set 'Dimension' to 3. The Dimension and Lag
parameters are required to compute the approximate entropy of the data.

dim = 3;
[~,lag] = phaseSpaceReconstruction(xv,[],dim)

lag = 10

Find the approximate entropy using the Lag value obtained in the previous step.

approxEnt = approximateEntropy(xv,lag,dim)

approxEnt = 0.0386

Since the quadcopter is traversing a pre-defined circular trajectory of fixed radius, the position data
is regular and hence, the value of approximate entropy is low.

Input Arguments
X — Uniformly sampled time-domain signal
vector | array | timetable

1 Functions

1-4

Uniformly sampled time-domain signal, specified as either a vector, array, or timetable. If X has
multiple columns, approximateEntropy computes the approximate entropy by treating X as a
multivariate signal.

If X is specified as a row vector, approximateEntropy treats it as a univariate signal.

dim — Embedding dimension
scalar | vector

Embedding dimension, specified as a scalar or vector. dim is equivalent to the 'Dimension' name-
value pair.

lag — Time delay
scalar | vector

Time delay, specified as a scalar or vector. lag is equivalent to the 'Lag' name-value pair.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ...,'Dimension',3

Dimension — Embedding dimension
2 (default) | scalar | vector

Embedding dimension, specified as the comma-separated pair consisting of 'Dimension' and a scalar
or vector. When Dimension is scalar, every column in X is reconstructed using Dimension. When
Dimension is a vector having same length as the number of columns in X, the reconstruction
dimension for column i is Dimension(i).

Specify Dimension based on the dimension of your system. For more information on embedding
dimension, see phaseSpaceReconstruction.

Lag — Delay in phase space reconstruction
1 (default) | scalar | vector

Delay in phase space reconstruction, specified as the comma-separated pair consisting of 'Lag' and a
scalar. When Lag is scalar, every column in X is reconstructed using Lag. When Lag is a vector
having same length as the number of columns in X, the reconstruction delay for column i is Lag(i).

If the delay is too small, random noise is introduced in the data. In contrast, if the lag is too large, the
reconstructed dynamics does not represent the true dynamics of the time series. For more
information on calculating optimal delay, see phaseSpaceReconstruction.

Radius — Similarity criterion
0.2*variance(X) | 0.2*sqrt(trace(cov(X))) | scalar

Similarity criterion, specified as the comma-separated pair consisting of 'Radius' and a scalar. The
similarity criterion, also called radius of similarity, is a tuning parameter that is used to identify a
meaningful range in which fluctuations in data are to be considered similar.

The default value of Radius is,

 approximateEntropy

1-5

• 0.2*variance(X), if X has a single column.
• 0.2*sqrt(trace(cov(X))), if X has multiple columns.

Output Arguments
approxEnt — Approximate entropy of nonlinear time series
scalar

Approximate entropy of nonlinear time series, returned as a scalar. Approximate entropy is a
regularity statistic that quantifies the unpredictability of fluctuations in a time series. A relatively
higher value of approximate entropy reflects the likelihood that similar patterns of observations are
not followed by additional similar observations.

For example, consider two binary signals S1 and S2,

S1 = [0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1];

S2 = [1 1 0 1 1 1 1 0 1 0 1 0 0 0 0 1];

Signal S1 is perfectly regular since it alternates between 0 and 1, that is, you can predict the next
value with knowledge of the previous value. Signal S2 however offers no insight into the next value,
even with prior knowledge of the previous value. Hence, signal S2 is random and less predictable.
Therefore, a signal containing highly repetitive patterns has a relatively small value of approxEnt
while a less predictable signal has a relatively larger value of approxEnt.

Use approximateEntropy as a measure of regularity to quantify levels of complexity within a time
series. The ability to discern levels of complexity within data sets is useful in the field of engineering
to estimate component failure by studying their vibration and acoustic signals, or in the clinical
domain where, for instance, the chance of a seizure is predicted by observing
Electroencephalography (EEG) patterns.[2][3]

Algorithms
Approximate entropy is computed in the following way,

1 The approximateEntropy function first generates a delayed reconstruction Y1:N for N data
points with embedding dimension m, and lag τ.

2 The software then calculates the number of within range points, at point i, given by,

Ni = ∑
i = 1, i ≠ k

N
1 Yi− Yk ∞ < R

where 1 is the indicator function, and R is the radius of similarity.
3 The approximate entropy is then calculated as approxEnt = Φm− Φm + 1 where,

Φm = N −m + 1 −1 ∑
i = 1

N −m + 1
log Ni

1 Functions

1-6

References
[1] Pincus, Steven M. "Approximate entropy as a measure of system complexity." Proceedings of the

National Academy of Sciences. 1991 88 (6) 2297-2301; doi:10.1073/pnas.88.6.2297.

[2] U. Rajendra Acharya, Filippo Molinari, S. Vinitha Sree, Subhagata Chattopadhyay, Kwan-Hoong
Ng, Jasjit S. Suri. "Automated diagnosis of epileptic EEG using entropies." Biomedical Signal
Processing and Control Volume 7, Issue 4, 2012, Pages 401-408, ISSN 1746-8094.

[3] Caesarendra, Wahyu & Kosasih, P & Tieu, Kiet & Moodie, Craig. "An application of nonlinear
feature extraction-A case study for low speed slewing bearing condition monitoring and
prognosis." IEEE/ASME International Conference on Advanced Intelligent Mechatronics:
Mechatronics for Human Wellbeing, AIM 2013.1713-1718. 10.1109/AIM.2013.6584344.

[4] Kantz, H., and Schreiber, T. Nonlinear Time Series Analysis. Cambridge: Cambridge University
Press, 2003.

See Also
correlationDimension | lyapunovExponent | phaseSpaceReconstruction

Introduced in R2018a

 approximateEntropy

1-7

bearingFaultBands
Generate frequency bands around the characteristic fault frequencies of ball or roller bearings for
spectral feature extraction

Syntax
FB = bearingFaultBands(FR,NB,DB,DP,beta)
FB = bearingFaultBands(___ ,Name,Value)
[FB,info] = bearingFaultBands(___)

bearingFaultBands(___)

Description
FB = bearingFaultBands(FR,NB,DB,DP,beta) generates characteristic fault frequency bands
FB of a roller or ball bearing using its physical parameters. FR is the rotational speed of the shaft or
inner race, NB is the number of balls or rollers, DB is the ball or roller diameter, DP is the pitch
diameter, and beta is the contact angle in degrees. The values in FB have the same implicit units as
FR.

FB = bearingFaultBands(___ ,Name,Value) allows you to specify additional parameters using
one or more name-value pair arguments.

[FB,info] = bearingFaultBands(___) also returns the structure info containing information
about the generated fault frequency bands FB.

bearingFaultBands(___) with no output arguments plots a bar chart of the generated fault
frequency bands FB.

Examples

1 Functions

1-8

Frequency Bands Using Bearing Specifications

For this example, consider a bearing with a pitch diameter of 12 cm with eight rolling elements. Each
rolling element has a diameter of 2 cm. The outer race remains stationary as the inner race is driven
at 25 Hz. The contact angle of the rolling element is 15 degrees.

With the above physical dimensions of the bearing, construct the frequency bands using
bearingFaultBands.

FR = 25;
NB = 8;
DB = 2;
DP = 12;
beta = 15;
FB = bearingFaultBands(FR,NB,DB,DP,beta)

FB = 4×2

 82.6512 85.1512
 114.8488 117.3488
 71.8062 74.3062
 9.2377 11.7377

FB is returned as a 4x2 array with default frequency band width of 10 percent of FR which is 2.5 Hz.
The first column in FB contains the values of F − W

2 , while the second column contains all the values

of F + W
2 for each characteristic defect frequency.

Frequency Bands for Roller Bearing

For this example, consider a micro roller bearing with 11 rollers where each roller is 7.5 mm. The
pitch diameter is 34 mm and the contact angle is 0 degrees. Assuming a shaft speed of 1800 rpm,

 bearingFaultBands

1-9

construct frequency bands for the roller bearing. Specify 'Domain' as 'frequency' to obtain the
frequency bands FB in the same units as FR.

FR = 1800;
NB = 11;
DB = 7.5;
DP = 34;
beta = 0;
[FB1,info1] = bearingFaultBands(FR,NB,DB,DP,beta,'Domain','frequency')

FB1 = 4×2
104 ×

 0.7626 0.7806
 1.1994 1.2174
 0.3791 0.3971
 0.0611 0.0791

info1 = struct with fields:
 Centers: [7.7162e+03 1.2084e+04 3.8815e+03 701.4706]
 Labels: ["1Fo" "1Fi" "1Fb" "1Fc"]
 FaultGroups: [1 2 3 4]

Now, include the sidebands for the inner race and rolling element defect frequencies using the
'Sidebands' name-value pair.

[FB2,info2] = bearingFaultBands(FR,NB,DB,DP,beta,'Domain','order','Sidebands',0:1)

FB2 = 8×2

 4.2368 4.3368
 5.6632 5.7632
 6.6632 6.7632
 7.6632 7.7632
 1.7167 1.8167
 2.1064 2.2064
 2.4961 2.5961
 0.3397 0.4397

info2 = struct with fields:
 Centers: [4.2868 5.7132 6.7132 7.7132 1.7667 2.1564 2.5461 0.3897]
 Labels: [1x8 string]
 FaultGroups: [1 2 2 2 3 3 3 4]

You can use the generated fault bands FB to extract spectral metrics using the faultBandMetrics
command.

Visualize Frequency Bands Around Characteristic Bearing Frequencies

For this example, consider a damaged bearing with a pitch diameter of 12 cm with eight rolling
elements. Each rolling element has a diameter of 2 cm. The outer race remains stationary as the
inner race is driven at 25 Hz. The contact angle of the rolling element is 15 degrees.

1 Functions

1-10

With the above physical dimensions of the bearing, visualize the fault frequency bands using
bearingFaultBands.

FR = 25;
NB = 8;
DB = 2;
DP = 12;
beta = 15;
bearingFaultBands(FR,NB,DB,DP,beta)

 bearingFaultBands

1-11

From the plot, observe the following bearing specific vibration frequencies:

• Cage defect frequency, Fc at 10.5 Hz.
• Ball defect frequency, Fb at 73 Hz.
• Outer race defect frequency, Fo at 83.9 Hz.
• Inner race defect frequency, Fi at 116.1 Hz.

Frequency Bands and Spectral Metrics of Ball Bearing

For this example, consider a ball bearing with a pitch diameter of 12 cm with 10 rolling elements.
Each rolling element has a diameter of 0.5 cm. The outer race remains stationary as the inner race is
driven at 25 Hz. The contact angle of the ball is 0 degrees. The dataset bearingData.mat contains
power spectral density (PSD) and its respective frequency data for the bearing vibration signal in a
table.

First, construct the bearing frequency bands including the first 3 sidebands using the physical
characteristics of the ball bearing.

FR = 25;
NB = 10;
DB = 0.5;
DP = 12;

1 Functions

1-12

beta = 0;
FB = bearingFaultBands(FR,NB,DB,DP,beta,'Sidebands',1:3)

FB = 14×2

 118.5417 121.0417
 53.9583 56.4583
 78.9583 81.4583
 103.9583 106.4583
 153.9583 156.4583
 178.9583 181.4583
 203.9583 206.4583
 262.2917 264.7917
 274.2708 276.7708
 286.2500 288.7500
 ⋮

FB is a 14x2 array which includes the primary frequencies and their sidebands.

Load the PSD data. bearingData.mat contains a table X where PSD is contained in the first column
and the frequency grid is in the second column, as cell arrays respectively.

load('bearingData.mat','X')
X

X=1×2 table
 Var1 Var2
 ________________ ________________

 {12001x1 double} {12001x1 double}

Compute the spectral metrics using the PSD data in table X and the frequency bands in FB.

spectralMetrics = faultBandMetrics(X,FB)

spectralMetrics=1×43 table
 PeakAmplitude1 PeakFrequency1 BandPower1 PeakAmplitude2 PeakFrequency2 BandPower2 PeakAmplitude3 PeakFrequency3 BandPower3 PeakAmplitude4 PeakFrequency4 BandPower4 PeakAmplitude5 PeakFrequency5 BandPower5 PeakAmplitude6 PeakFrequency6 BandPower6 PeakAmplitude7 PeakFrequency7 BandPower7 PeakAmplitude8 PeakFrequency8 BandPower8 PeakAmplitude9 PeakFrequency9 BandPower9 PeakAmplitude10 PeakFrequency10 BandPower10 PeakAmplitude11 PeakFrequency11 BandPower11 PeakAmplitude12 PeakFrequency12 BandPower12 PeakAmplitude13 PeakFrequency13 BandPower13 PeakAmplitude14 PeakFrequency14 BandPower14 TotalBandPower
 ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ _______________ _______________ ___________ _______________ _______________ ___________ _______________ _______________ ___________ _______________ _______________ ___________ _______________ _______________ ___________ ______________

 121 121 314.43 56.438 56.438 144.95 81.438 81.438 210.57 106.44 106.44 276.2 156.44 156.44 407.45 181.44 181.44 473.07 206.44 206.44 538.7 264.75 264.75 691.77 276.75 276.75 723.27 288.69 288.69 754.61 312.69 312.69 817.61 324.63 324.63 848.94 336.63 336.63 880.44 13.188 13.188 31.418 7113.4

spectralMetrics is a 1x43 table with peak amplitude, peak frequency and band power calculated
for each frequency range in FB. The last column in spectralMetrics is the total band power,
computed across all 14 frequencies in FB.

Input Arguments
FR — Rotational speed of the shaft or inner race
positive scalar

Rotational speed of the shaft or inner race, specified as a positive scalar. FR is the fundamental
frequency around which bearingFaultBands generates the fault frequency bands. Specify FR
either in Hertz or revolutions per minute.

 bearingFaultBands

1-13

NB — Number of balls or rollers
positive integer

Number of balls or rollers in the bearing, specified as a positive integer.

DB — Diameter of the ball or roller
positive scalar

Diameter of the ball or roller, specified as a positive integer.

DP — Pitch diameter
positive scalar

Pitch diameter of the bearing, specified as a positive scalar. DP is the diameter of the circle that the
center of the ball or roller travels during the bearing rotation.

beta — Contact angle
non-negative scalar

Contact angle in degrees between a plane perpendicular to the ball or roller axis and the line joining
the two raceways, specified as a positive scalar.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ...,'Harmonics',[1,3,5]

Harmonics — Harmonics of the fundamental frequency to be included
1 (default) | vector of positive integers

Harmonics of the fundamental frequency to be included, specified as the comma-separated pair
consisting of 'Harmonics' and a vector of positive integers. The default value is 1. Specify
'Harmonics' when you want to construct the frequency bands with more harmonics of the
fundamental frequency.

Sidebands — Sidebands around the fundamental frequency and its harmonics to be
included
0 (default) | vector of nonnegative integers

Sidebands around the fundamental frequency and its harmonics to be included, specified as the
comma-separated pair consisting of 'Sidebands' and a vector of nonnegative integers. The default
value is 0. Specify 'Sidebands' when you want to construct the frequency bands with sidebands
around the fundamental frequency and its harmonics.

Width — Width of the frequency bands centered at the nominal fault frequencies
10 percent of the fundamental frequency (default) | positive scalar

Width of the frequency bands centered at the nominal fault frequencies, specified as the comma-
separated pair consisting of 'Width' and a positive scalar. The default value is 10 percent of the
fundamental frequency. Avoid specifying 'Width' with a large value so that the fault bands do not
overlap.

1 Functions

1-14

Domain — Units of the fault band frequencies
'frequency' (default) | 'order'

Units of the fault band frequencies, specified as the comma-separated pair consisting of 'Domain' and
either 'frequency' or 'order'. Select:

• 'frequency' if you want FB to be returned in the same units as FR.
• 'order' if you want FB to be returned as number of rotations relative to the inner race rotation,

FR.

Output Arguments
FB — Fault frequency bands
Nx2 array

Fault frequency bands, returned as an Nx2 array, where N is the number of fault frequencies. FB is
returned in the same units as FR, in either hertz or orders depending on the value of 'Domain'. Use
the generated fault frequency bands to extract spectral metrics using faultBandMetrics. The
generated fault bands, F − W

2 , F + W
2 , are centered at:

• Outer race defect frequency, Fo and its harmonics
• Inner race defect frequency, Fi, its harmonics and sidebands at FR
• Rolling element (ball) defect frequency, Fbits harmonics and sidebands at Fc
• Cage (train) defect frequency, Fc and its harmonics

The value W is the width of the frequency bands, which you can specify using the 'Width' name-value
pair. For more information on bearing frequencies, see “Algorithms” on page 1-15.

info — Information about the fault frequency bands
structure

Information about the fault frequency bands in FB, returned as a structure with the following fields:

• Centers — Center fault frequencies
• Labels — Labels describing each frequency
• FaultGroups — Fault group numbers identifying related fault frequencies

Algorithms
bearingFaultBands computes the different characteristic bearing frequencies as follows:

• Outer race defect frequency, Fo = NB
2 FR 1 − DB

DP cos β

• Inner race defect frequency, Fi = NB
2 FR 1 + DB

DP cos β

•
Rolling element (ball) defect frequency, Fb = DP

2DBFR 1 − DB
DP cos β

2

• Cage (train) defect frequency,Fc = FR
2 1 − DB

DP cos β

 bearingFaultBands

1-15

References
[1] Chandravanshi, M & Poddar, Surojit. "Ball Bearing Fault Detection Using Vibration Parameters."

International Journal of Engineering Research & Technology. 2. 2013.

[2] Singh, Sukhjeet & Kumar, Amit & Kumar, Navin. "Motor Current Signature Analysis for Bearing
Fault Detection in Mechanical Systems." Procedia Materials Science. 6. 171–177. 10.1016/
j.mspro.2014.07.021. 2014.

[3] Roque, Antonio & Silva, Tiago & Calado, João & Dias, J. "An approach to fault diagnosis of rolling
bearings." WSEAS Transactions on Systems and Control. 4. 2009.

See Also
faultBandMetrics | faultBands | gearMeshFaultBands

Introduced in R2019b

1 Functions

1-16

bhattacharyyaDistance
One-dimensional Bhattacharyya distance between two independent data groups to measure class
separability

Syntax
Z = bhattacharyyaDistance(X,I)

Description
bhattacharyyaDistance is a function used in code generated by Diagnostic Feature Designer.

Z = bhattacharyyaDistance(X,I) calculates the one-dimensional Bhattacharyya distances
between two independent subsets of data set X that are grouped according to the logical labels in I.
The Bhattacharyya distance provides a metric for ranking features according to their ability to
separate two classes of data, such as data from healthy and faulty machines. The distance calculation
assumes that the data in X follows a Gaussian distribution.

Code that is generated by Diagnostic Feature Designer uses bhattacharyyaDistance when
ranking features with this method.

Input Arguments
X — Data samples to group
vector | matrix

Data set containing data samples that can be logically classified into two groups, specified as a vector
when you have a single set of samples, such as values for one feature, and a matrix when you have
multiple sets of samples.

• When X contains a single set of n features, such as a set of multiple features extracted from a
single data source, X is a 1-by-n vector.

• When X contains m sets of n features, X is an m-by-n matrix. Each row in X represents one data
source and must correspond to a single logical class.

X must contain at least two rows that correspond to the logical class in I of 0 and two rows that
correspond to the label 1 to calculate legitimate Bhattacharyya distance values.

For example, suppose that you have a set of five features for each of 20 gearboxes and you are
computing the Bhattacharyya distances to assess these features. X is a 20-by-5 matrix. Each row
represents a gearbox that is either healthy or faulty, as indicated by the associated logical class label
of 0 or 1. At least two gearboxes must be healthy and at least two gearboxes must be faulty. The
Bhattacharyya distance indicates how well each feature separates the data for the healthy gearboxes
from the data for the faulty gearboxes.

I — Logical classification labels
vector

Logical classification labels that assign the rows in X to one of two logical classes, specified as a
vector of length m, where m is the number of rows in X.

 bhattacharyyaDistance

1-17

For example, suppose once more that X is a 20-by-5 matrix corresponding to 20 gearboxes. The first 9
gearboxes are healthy. The remaining 11 gearboxes are faulty. Define the healthy state as 0 and the
faulty state as 1. Then I has a length of 20. The first 9 labels in I are equal to 0 and the remaining 11
labels are equal to 1.

Output Arguments
Z — Bhattacharyya distances
scalar | vector

Bhattacharyya distances between labeled groups, returned as a scalar or a vector of length n.

• If X is a vector, then Z is a scalar.
• If X is a matrix, then bhattacharyyaDistance calculates the distance separately for each

feature. Z is then a vector of length n, where n is the number of columns in Z.

bhattacharyyaDistance treats NaN entries in X as missing values and ignores them.

References
[1] Theodoridis, Sergios, and Konstantinos Koutroumbas. Pattern Recognition, 177–179. 2nd ed.

Amsterdam; Boston: Academic Press, 2003.

See Also
Diagnostic Feature Designer | correlationWeightedScore

Topics
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”

Introduced in R2020a

1 Functions

1-18

compare
Compare test data to historical data ensemble for similarity models

Syntax
compare(mdl,data)
compare(___ ,Name,Value)

Description
compare(mdl,data) plots the test component degradation data in data superimposed on the most
similar data sets from the historical ensemble stored in the fitted similarity model mdl. The K most
similar data sets from the ensemble are plotted, where K is the NumNearestNeighbors property of
mdl.

compare(___ ,Name,Value) specifies plotting options using one or more name-value pair
arguments.

Examples

Compare Test Data to Historical Data

Load training data.

load('pairwiseTrainTables.mat')

The training data is a cell array of tables. Each table is a degradation feature profile for a component.

Create and train a pairwise similarity model.

mdl = pairwiseSimilarityModel;
fit(mdl,pairwiseTrainTables,"Time","Condition")

Load testing data.

load('pairwiseTestData.mat')

Compare the degradation profile of the test data to the profiles of the historical data ensemble.

compare(mdl,pairwiseTestData)

 compare

1-19

Compare Test Data to Most Similar Historical Data

Load training data.

load('pairwiseTrainTables.mat')

The training data is a cell array of tables. Each table is a degradation feature profile for a component.

Create and train a pairwise similarity model.

mdl = pairwiseSimilarityModel;
fit(mdl,pairwiseTrainTables,"Time","Condition")

Load testing data.

load('pairwiseTestData.mat')

Compare the degradation profile of the test data to the profiles of the 10 most similar members of the
historical data ensemble.

compare(mdl,pairwiseTestData,'NumNearestNeighbors',10)

1 Functions

1-20

Input Arguments
mdl — Similarity RUL model
hashSimilarityModel object | pairwiseSimilarityModel object |
residualSimilarityModel object

Similarity RUL model, specified as a hashSimilarityModel object, a pairwiseSimilarityModel
object, or a residualSimilarityModel object. The model must be fitted using fit before calling
compare.

data — Degradation feature measurements
array | table | timetable

Degradation feature profiles for estimating the RUL of similarity models, measured over the life span
of a component up to the current life time, specified as one of the following:

• (N+1)-by-M numeric array, where N is the number of features and M is the number of feature
measurements. In each row, the first column contains the usage time and the remaining columns
contain the corresponding degradation feature measurements. The order of the features must
match the order specified in the DataVariables property of mdl.

• table or timetable object — The table must contain variables with names that match the
strings in the DataVariables and LifeTimeVariable properties of mdl.

 compare

1-21

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumNearestNeighbors','10' plots ten similar data sets

NumNearestNeighbors — Number of nearest neighbors
Inf | finite positive integer

Number of nearest neighbors, specified as the comma-separated pair 'NumNearestNeighbors' and
either Inf or a finite positive integer. Use this option to select the number of most similar data sets to
plot by overriding the NumNearestNeighbors property. If NumNearestNeighbors is Inf, then
compare plots the degradation data for all the ensemble data sets.

Threshold — Degradation data bounds
two-column array

Degradation data bounds, specified as the comma-separated pair 'Threshold' and a two-column
array with N rows, where N is the number of data variables used by mdl. The first column of
Threshold contains the lower bounds for the variables, and the second column contains the upper
bounds. The bounds are rendered as yellow-colored patches.

To disable the bounds for a given variable, specify the lower and upper bounds as -Inf and Inf,
respectively.

Tips
• To select which signals to plot, right-click on the plot area, and select Data Variable Selector. In

the Data Variable Selector dialog box, the Select Variables box shows the variables that are
available for plotting.

See Also
Functions
hashSimilarityModel | pairwiseSimilarityModel | residualSimilarityModel

Introduced in R2018a

1 Functions

1-22

correlationDimension
Measure of chaotic signal complexity

Syntax
corDim = correlationDimension(X)
corDim = correlationDimension(X,lag)
corDim = correlationDimension(X,[],dim)
corDim = correlationDimension(X,lag,dim)
[corDim,rRange,corInt] = correlationDimension(___)
___ = correlationDimension(___ ,Name,Value)

correlationDimension(___)

Description
corDim = correlationDimension(X) estimates the correlation dimension of the uniformly
sampled time-domain signal X. Correlation dimension is the measure of dimensionality of the space
occupied by a set of random points. corDim is estimated as the slope of the correlation integral
versus the range of radius of similarity. Use correlationDimension as a characteristic measure to
distinguish between deterministic chaos and random noise, to detect potential faults.[1]

corDim = correlationDimension(X,lag) estimates the correlation dimension of the uniformly
sampled time-domain signal X for the time delay lag.

corDim = correlationDimension(X,[],dim) estimates the correlation dimension of the
uniformly sampled time-domain signal X for the embedding dimension dim.

corDim = correlationDimension(X,lag,dim) estimates the correlation dimension of the
uniformly sampled time-domain signal X for the time delay lag and embedding dimension dim.

[corDim,rRange,corInt] = correlationDimension(___) additionally estimates the range of
radius of similarity and correlation integral of the uniformly sampled time-domain signal X.
Correlation integral is the mean probability that the states of a system are close at two different time
intervals, which reflects self-similarity.

___ = correlationDimension(___ ,Name,Value) estimates the correlation dimension with
additional options specified by one or more Name,Value pair arguments.

correlationDimension(___) with no output arguments creates a correlation integral versus
neighborhood radius plot.

Examples

Visualize and Estimate Correlation Dimension of Data

In this example, consider a Lorenz Attractor describing a unique set of chaotic solutions.

Load the data set and visualize the Lorenz Attractor in 3D.

 correlationDimension

1-23

load('lorenzAttractorExampleData.mat','data');
plot3(data(:,1),data(:,2),data(:,3));

For this example, use only x-direction data of the Lorenz Attractor. Since lag is unknown, estimate
the delay using phaseSpaceReconstruction. Set 'Dimension' to 3 since the Lorenz Attractor is a
three-dimensional system. The dim and lag parameters are required to create the correlation
integral versus the neighborhood radius plot.

xdata = data(:,1);
dim = 3;
[~,lag] = phaseSpaceReconstruction(xdata,[],dim)

lag = 10

Create the correlation integral versus neighborhood radius plot for the Lorenz Attractor, using the
lag value obtained in the previous step. Set an appropriate value for 'NumPoints' to determine a
good resolution for the neighborhood radius.

Np = 100;
correlationDimension(xdata,lag,dim,'NumPoints',Np);

1 Functions

1-24

The first dashed, vertical green line (on the left) indicates the value of MinRadius, while the second
vertical green line (on the right), represents MaxRadius. The dashed red line indicates the linear fit
line for the correlation integral versus neighborhood radius data, within the computed range of
radius.

To compute correlation dimension, you first need to determine the MinRadius and MaxRadius
values needed for accurate estimation.

In the plot, drag the two dashed, vertical green lines to 'best fit' the linear fit line to the original data
line to obtain the range of radius.

 correlationDimension

1-25

Note the new values of MinRadius and MaxRadius after dragging the two vertical lines for an
appropriate fit.

Find the correlation dimension of the Lorenz Attractor, using the new MinRadius and MaxRadius
values obtained in the previous step.

MinR = 0.05656;
MaxR = 2.516;
corDim = correlationDimension(xdata,[],dim,'MinRadius',MinR,'MaxRadius',MaxR,'NumPoints',Np)

corDim = 1.7490

The value of correlation dimension is directly proportional to the level of chaos in the system, that is,
a higher value of corDim represents a high level of chaotic complexity in the system.

Input Arguments
X — Uniformly sampled time-domain signal
vector | array | timetable

Uniformly sampled time-domain signal, specified as a vector, array, or timetable. If X has multiple
columns, correlationDimension computes the correlation dimension by treating X as a
multivariate signal.

If X is specified as a row vector, correlationDimension treats it as a univariate signal.

1 Functions

1-26

dim — Embedding dimension
scalar | vector

Embedding dimension, specified as a scalar or vector. dim is equivalent to the 'Dimension' name-
value pair.

lag — Time delay
scalar | vector

Time delay, specified as a scalar or vector. lag is equivalent to the 'Lag' name-value pair.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ...,'Dimension',3

Dimension — Embedding dimension
2 (default) | scalar | vector

Embedding dimension, specified as the comma-separated pair consisting of 'Dimension' and a scalar
or vector. When Dimension is scalar, every column in X is reconstructed using Dimension. When
Dimension is a vector having same length as the number of columns in X, the reconstruction
dimension for column i is Dimension(i).

Specify Dimension based on the dimension of your system, that is, the number of states. For more
information on embedding dimension, see phaseSpaceReconstruction.

Lag — Delay in phase space reconstruction
1 (default) | scalar | vector

Delay in phase space reconstruction, specified as the comma-separated pair consisting of 'Lag' and
either a scalar or vector. When Lag is scalar, every column in X is reconstructed using Lag. When Lag
is a vector having same length as the number of columns in X, the reconstruction delay for column i
is Lag(i).

If the delay is too small, random noise is introduced in the data. In contrast, if the lag is too large, the
reconstructed dynamics does not represent the true dynamics of the time series. For more
information on estimating optimal delay, see phaseSpaceReconstruction.

MinRadius — Minimum radius of similarity
MaxRadius/1000 (default) | scalar

Minimum radius of similarity, specified as the comma-separated pair consisting of 'MinRadius' and a
scalar. Find the optimal value of MinRadius by adjusting the linear fit of the correlation dimension
plot.

MaxRadius — Maximum radius of similarity
0.2*sqrt(trace(cov(X))) (default) | scalar

Maximum radius of similarity, specified as the comma-separated pair consisting of 'MaxRadius' and a
scalar. Find the optimal value of MaxRadius by adjusting the linear fit of the correlation dimension
plot.

 correlationDimension

1-27

NumPoints — Number of points for computation
10 (default) | positive scalar integer

Number of points for computation, specified as the comma-separated pair consisting of 'NumPoints'
and a positive scalar integer. NumPoints is the number of points between MinRadius and
MaxRadius. Choose an appropriate value for NumPoints based on the resolution required for
rRange.

NumPoints only accepts values greater than 1, and the default value is 10.

Output Arguments
corDim — Correlation Dimension
scalar

Correlation dimension, returned as a scalar. corDim is a measure of chaotic signal complexity in
multidimensional phase space and is the slope of the correlation integral versus the range of radius of
similarity. corDim is used in fault detection as a characteristic measure to distinguish between
deterministic chaos and random noise.

rRange — Range of radius of similarity
array

Radius of similarity, returned as an array. rRange is the difference between MaxRadius and
MinRadius split into an equal number of points defined by NumPoints.

corInt — Correlation integral
array

Correlation integral, returned as an array. corInt is the mean probability that the states at two
different times are close, which reflects self-similarity. NumPoints defines the length of corInt
array.

Algorithms
Correlation dimension is computed in the following way,

1 The correlationDimension function first generates a delayed reconstruction Y1:N with
embedding dimension m, and lag τ.

2 The software then calculates the number of with-in range points, at point i, given by,

Ni R = ∑
i = 1, i ≠ k

N
1 Yi− Yk < R

where 1 is the indicator function, and R is the radius of similarity, given by, R =
exp(linspace(log(rmin), log(rmax), N)). Here, rmin is MinRadius, rmax is MaxRadius, and N is
NumPoints.

3 The correlation dimension corDim is the slope of C(R) vs. R where, the correlation integral C(R)
is defined as,

C R = 2
N N − 1 ∑

i = 1

N
Ni R

1 Functions

1-28

References
[1] Caesarendra, Wahyu & Kosasih, P & Tieu, Kiet & Moodie, Craig. "An application of nonlinear

feature extraction-A case study for low speed slewing bearing condition monitoring and
prognosis." IEEE/ASME International Conference on Advanced Intelligent Mechatronics:
Mechatronics for Human Wellbeing, AIM 2013.1713-1718. 10.1109/AIM.2013.6584344.

[2] Theiler, James. "Efficient algorithm for estimating the correlation dimension from a set of discrete
points". American Physical Society. Physical Review A 1987/11/1. Volume 36. Issue 9. Pages
44-56.

See Also
approximateEntropy | lyapunovExponent | phaseSpaceReconstruction

Introduced in R2018a

 correlationDimension

1-29

correlationWeightedScore
Adjust feature ranking scores using correlation factor

Syntax
[score,idx] = correlationWeightedScore(X,Z,alpha)

Description
correlationWeightedScore is a function used in code generated by Diagnostic Feature
Designer.

[score,idx] = correlationWeightedScore(X,Z,alpha) weights the original ranking scores
in Z for the features in X according to the correlation between features. Correlation weighting
reduces feature redundancy. correlationWeightedScore lowers the score of a feature that has a
high correlation to a higher ranking feature. The correlation importance factor alpha determines
how much impact the correlation level has on the feature ranking score.

Code that is generated by Diagnostic Feature Designer uses correlationWeightedScore when
ranking features if the specified correlation importance factor is greater than zero.

Input Arguments
X — Feature set
vector | matrix

Feature set, specified as an m-by-1 vector or an m-by-n matrix, where m is the number of data
samples and n is the number of features. For an ensemble-based feature set, m is the number of
members in the ensemble.

Z — Original ranking scores
vector

Original ranking scores, computed by a ranking method such as bhattacharyyaDistance, and
specified as a vector of length n, where n is the number of features. The length of Z must be the same
as the width of X.

alpha — Correlation importance factor
scalar in the range [0 1]

Correlation importance factor that determines how much impact correlation has on scores.

• If alpha is set to 0, correlation has no impact on the ranking score.
• If alpha is set to 1, correlation has the maximum possible impact on ranking score.

Output Arguments
score — Adjusted ranking scores
vector

1 Functions

1-30

Adjusted ranking scores, returned as a vector that is the same size as Z.

idx — Updated ranking order
integer vector

Updated ranking order after the scores are adjusted by correlation weighting, returned as a vector of
integers.

References
[1] Theodoridis, Sergios, and Konstantinos Koutroumbas. Pattern Recognition, 182–183. 2nd ed.

Amsterdam; Boston: Academic Press, 2003.

See Also
Diagnostic Feature Designer | bhattacharyyaDistance | relativeEntropy

Topics
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”

Introduced in R2020a

 correlationWeightedScore

1-31

Diagnostic Feature Designer
Interactively extract, visualize, and rank features from measured or simulated data for machine
diagnostics and prognostics

Description
The Diagnostic Feature Designer app allows you to accomplish the feature design portion of the
predictive maintenance workflow using a multifunction graphical interface. You design and compare
features interactively, and then determine which features are best at discriminating between data
from nominal systems and from faulty systems. The most effective features ultimately become your
condition indicators for fault diagnosis and prognostics.

Using this app, you can:

• Import measured or simulated data from individual files, an ensemble file, or an ensemble
datastore that references files external to the app.

• Interactively visualize data to plot the ensemble variables you import or that you compute within
the app. Group data by condition label in plots so that you can clearly see whether member data
comes from nominal or faulty systems.

• Derive new variables such as time-synchronous averaged signals or order spectra. The app
executes processing on all ensemble members with one command.

• Generate features from your variables, and visualize their effectiveness using histograms.
Features include signal statistics, nonlinear metrics, rotating machinery metrics, and spectral
metrics.

• Use conditional ranking with labeled features so that you can determine which ones are most
likely to discriminate between nominal and faulty behavior.

• Use prognostic ranking with features extracted from run-to-failure data so that you can determine
which ones are most likely to indicate remaining useful life (RUL).

• Export your most effective features directly to Classification Learner for more insight into
feature effectiveness and for algorithm training.

• Generate code for the features you choose so that you can reproduce, customize, and automate
the feature computations in a MATLAB® function.

To get started with the app, you must have data from your systems available in your MATLAB
workspace. For information about organizing your data for import into the app, see “Organize System
Data for Diagnostic Feature Designer”.

1 Functions

1-32

Open the Diagnostic Feature Designer App
• MATLAB toolstrip: On the Apps tab, under Control System Design and Analysis, click the app

icon.
• MATLAB command prompt: Enter diagnosticFeatureDesigner.

Examples
• “Identify Condition Indicators for Predictive Maintenance Algorithm Design”
• “Import and Visualize Ensemble Data in Diagnostic Feature Designer”
• “Process Data and Explore Features in Diagnostic Feature Designer”
• “Rank and Export Features in Diagnostic Feature Designer”
• “Prepare Matrix Data for Diagnostic Feature Designer”
• “Isolate a Shaft Fault Using Diagnostic Feature Designer”
• “Perform Prognostic Feature Ranking for a Degrading System Using Diagnostic Feature

Designer”
• “Generate a MATLAB Function in Diagnostic Feature Designer”
• “Apply Generated MATLAB Function to Expanded Data Set”

 Diagnostic Feature Designer

1-33

Parameters
Feature Designer Tab

New Session — Import datasets from the MATLAB workspace into the app
button

Initiate a new app session by importing source data into the app from your MATLAB workspace. You
can import data from tables, timetables, cell arrays, or matrices. You can import data from a source
that combines the data of multiple ensemble members, or import each ensemble member individually.
You can also import an ensemble datastore that contains information that allows the app to interact
with external data files. Your files can contain actual or simulated time-domain measurement data,
spectral models or tables, variable names, condition and operational variables, and features you
generated previously. Diagnostic Feature Designer combines all your member data into a single
ensemble dataset. In this dataset, each variable is a collective signal or model that contains all the
individual member values.

For more information about importing data, see “Import Data into Diagnostic Feature Designer”.

For more information about terms related to data ensembles, see “More About” on page 1-42.

For more information about organizing your data for import into the app, see “Organize System Data
for Diagnostic Feature Designer”.

Computation Options — Select independent variable, data handling mode, parallel
computing, and in-app ensemble options
button

Specify preferences for how Diagnostic Feature Designer performs computations and where the
app stores results. Computation Options opens a dialog box that accepts these preferences. Some
options are visible only under specific conditions:

• Independent Variable— Available independent variables (IVs). Choices are available when you
specify more than one IV for at least one signal during the import process. Your selection changes
the IV of all the applicable signals.

• Data Handling Mode — Full signal or frame-based. Always available
• Results Return Location — Write results to original folder or to local dataset. Available only

when you import an ensemble datastore object.
• Use Parallel Computing — Process ensemble members in parallel. Available only when you have

the Parallel Computing Toolbox™ installed.

For more information, see “Computation Options”.

Data Processing — Select data processing options by category
filtering & averaging | residue generation | spectral estimation

Select options for processing your data into new signals. Use these new signals as inputs to other
processing options or as inputs to feature generation. Most processing options operate on each
ensemble member. You can also perform ensemble-level processing to view how the ensemble
behaves as a whole. Each option selection opens a new tab for your specifications. Selection of an
option also opens a general Data Processing tab if that tab is not already open. The Data
Processing tab provides information about the input signal.

1 Functions

1-34

To specify a signal to process, select a variable from the data browser prior to selecting the data
processing option. To change the signal after you have opened the option tab, close the option tab
and select a new signal either in the data browser or from the Signal menu in the Data Processing
tab.

For information about the choices, see:

• Filtering & Averaging

• “Time-Synchronous Signal Averaging”
• “Ensemble Statistics”
• “Remove Harmonics”
• “Filter Time-Synchronous Averaged Signals”
• “Interpolation”

• Residue Generation

• “Subtract Reference”
• Spectral Estimation

• “Power Spectrum”
• “Order Spectrum”

Time Domain Features — Compute features in the time domain
Signal Features | Rotating Machinery Features | Nonlinear Features

Compute features in the time domain. Signal Features apply to any signals. Rotational Machinery
Features are specialized metrics that apply to gearing. Nonlinear Features provide metrics that
characterize chaotic behavior in vibration signals. Each selection opens a dialog box for your source
signal and feature specifications. For more information, see:

• “Signal Features”
• “Rotating Machinery Features”
• “Nonlinear Features”

Spectral Features — Compute features in the frequency domain
button

Spectral features provide frequency-domain metrics on your data. To compute spectral features, you
must already have a power spectrum or an order spectrum variable. Selecting Spectral Features
opens a dialog box for your source signal and feature specifications. For more information, see
“Spectral Features”.

Rank Features — Rank features
feature table

Open the feature ranking tab that lets you perform classification and prognostic ranking for the
feature table that you select. For more information, see “Feature Ranking Tab” on page 1-0 .

Export — Export features and data or generate MATLAB code
Export Features to the MATLAB workspace | Export Features to the Classification
Learner | Export a Data Set to the MATLAB Workspace | Generate Function for
Features | Generate Function for...

 Diagnostic Feature Designer

1-35

Export features, or your entire data set, to use them or share them outside of the app. Generate code
to reproduce your feature computations in a MATLAB function.

• For feature export, both options open an unranked selectable list to choose from. When you export
to the MATLAB workspace, you can use command-line techniques with the features. When you
export to Classification Learner, you open a Classification Learner session that uses your
selected features as input.

If you have ranked your features and want to select features to export from a ranked list, use
Export from the Feature Ranking tab.

• For code generation, the first option, Generate Function for Features, lets you generate
MATLAB code with a simple set of specifications for feature table, ranking algorithm, and number
of features. Use this option when you want to generate code for features based solely on ranking,
or when you want to generate code for all your features.

The second code generation option, Generate Function for..., allows you to customize your
selection of items to include in the function. For example, you can filter your selection based on
criteria such as input or output text. You can include signals and spectra that are not used in the
features you select. Selecting Generate Function for... opens a selectable list of all the
signals, features, and ranking tables that you have generated. Generate Function for... also
opens the Code Generation tab, which provides filtering capability for the list. Use a filter to
view only the items that meet the filter criterion. You can use different filters to select the outputs
you want. To review all your selections regardless of filter, click Sort by Selection. This option
lists all the available outputs with items that you selected on top. For more information, see Code
Generation Tab.

If you have specified frame-based data (see Computation Options), clicking Generate Function
for... first opens a list with selections for the frame specifications that you have used. The items
in your generated code must either all operate on the full signal or all use the same frame
specification.

For more information on how to generate code in the app, see “Automatic Feature Extraction
Using Generated MATLAB Code” and “Generate a MATLAB Function in Diagnostic Feature
Designer”.

For more information about the Export options, see:

• “Export Features to MATLAB Workspace”
• “Export Features to Classification Learner”
• “Export a Dataset to the MATLAB Workspace”
• “Generate Function for Features”

Signal Trace Tab, Power Spectrum Tab, and Order Spectrum Tab

Panner — Control plot scale and x-axis range
on (default) | off

Use the Panner to focus on data segments in the x-axis range that you specify and to change the plot
scale. The Panner provides a strip plot beneath the main plot. To focus on a section of the main plot,
move the handles. To change the scale of the plot, select one of the options in Scale.

Ensemble View Preferences — Group data and configure view preferences
Group by | Configure View

1 Functions

1-36

Use Ensemble View Preferences to control how you view your data as an ensemble:

• Group by — Group data by a condition variable label. The app uses color to the label group for
each ensemble member. For example, if your condition variable is faultCode with labels
healthy and degraded, the app uses one color for data with the healthy data and another color
for data with the degraded label.

• Configure View — Specify number of ensemble members to display, whether to display
variation among the members . Selecting this option opens a dialog box for your specifications.
For more information, see “Ensemble View Preferences”.

Group Signals, Group Variables — Plot multiple variables together in separate plots or
in one plot
off (default) | on

Specify how to plot multiple variables together.

• Select to create separate plots displayed vertically, each with a unique y-axis scaling.
• Clear to create a single plot that overlays all traces and uses a single y-axis scale.

Show Signal Information — Display highlighted variable member name and condition
label
on (default) | off

In a signal or spectrum plot, you highlight an individual member by positioning your cursor on the
member trace. Select Show Signal Information to display both the variable member that you
highlight and the condition label for that member in the lower right corner.

Data Cursors — Display x and y values of points, distances between two points
off (default) | on

Select Data Cursors to display values of key points in your signal. Data Cursors are horizontal and
vertical bars that you position over a point of interest, such as a peak value. The cursors display the x
and y positions. To display the distance between the cursors, select Show Signal Information. To
lock the bars so that they move together, select one of the Lock Spacing options.

Histogram Tab

Select Features — Choose the features to plot
button (default)

Click Select Features to open a selectable list of features to plot. Use Select Features, for example,
when you have generated many features but you want to focus on a subset in a single plot panel.

Group By — Select the condition variable for grouping data
condition variable name

Select the condition variable to base feature histograms on. The feature histograms use color to
visualize the separation of data groups with different labels for that condition variable.
Example: faultCode

Bin Settings — Specify the histogram resolution
auto (default) | numeric | binning method name

 Diagnostic Feature Designer

1-37

Specify histogram resolution, as driven by your selection of Bin Width, Bin Method, Number of
Bins, and Bin Limits. The bin settings apply to all the histograms for the feature table

The bin settings are not independent. The algorithm uses an order of precedence to determine what
to use:

• The Binning Method is the default driver for the bin width.
• A Bin Width specification overrides the Binning Method.
• The bin width and the independent Bin Limits drive the number of bins. A Number of Bins
specification has an effect only when the value of Group By is none.

For more information on interpreting and customizing histograms, see “Generate and Customize
Feature Histograms”.

Feature Ranking Tab

Classification Ranking — Select a classification ranking algorithm to apply
T-Test | One-way ANOVA | ROC | ...

Select a classification ranking technique to assess how effectively each feature separates data with
different condition labels. If you have already ranked your features, you can rank again with a
different technique and display the resulting rankings together. Each technique uses a different
statistical method.

The menu differentiates between two-class and multiclass ranking methods.

• Two-Class Methods — Use when your condition variable (CV) has only two labels, such as
healthy and faulty. The default value for two-class methods is T-Test.

• Multiclass methods — use when your condition variable has more than two labels, such as
healthy, faultCode1, and faultCode2. The default value for multiclass methods is One-way
ANOVA

The default ranking technique for two-class condition variables, t-test, is the simplest technique, as
it uses only the means of the two labeled groups and not their distributions. t-test is primarily
useful for identifying ineffective features to discard.

The table lays out the influence of specific criteria on ranking-method selection.

Criterion Ranking Method
Condition Variable Type • Multiclass CV — One-way ANOVA, Kruskal-

Wallis
• Two-Class CV — T-test, entropy,

Bhattacharyya, Wilcoxon, ROC
Feature Scoring Criterion • Mean Difference — T-test (primarily for

discarding ineffective features)
• Distribution Overlap — All others

Distribution Shape • Gaussian — T-test, entropy, Bhattacharyya,
one-way ANOVA

• Non-Gaussian — ROC, Wilcoxon, Kruskal-
Wallis

1 Functions

1-38

Criterion Ranking Method
Desired Method Basis • Hypothesis Test — T-test, one-way ANOVA,

Wilcoxon, Kruskal-Wallis
• Distance Measurement — Entropy,

Bhattacharyya, ROC

Selecting a technique activates a new tab with a name that matches the ranking technique. For more
information on this technique-activated tab, see Ranking Technique Tab.

For more information on the ranking methods, see:

• One-way ANOVA — anova1
• Bhattacharyya — bhattacharyyaDistance
• Kruskal-Wallis — kruskalwallis
• Entropy — relativeEntropy
• ROC — perfcurve
• Wilcoxon — ranksum
• T-test — ttest2

Prognostic Ranking — Select a prognostic ranking algorithm to apply
Monotonicity | Trendability | Prognosability

Select a prognostic ranking technique to assess how effectively each feature tracks the degradation
of your ensemble members when you have run-to-failure data. The top-ranking features are best at
predicting the remaining useful life (RUL).

The app provides three prognostic ranking techniques, all of which score features on a scale ranging
from 0 through 1. One technique, Monotonicity, is always available. The other two techniques,
Trendability and Prognosability, are available only when you are using frame-based data. The
smaller data segments in frame-based data allow the tracking of small changes that are induced by
degradation.

• Monotonicity characterizes the trend of a feature as the system evolves toward failure. As a
system gets progressively closer to failure, a suitable condition indicator has a monotonic positive
or negative trend. For more information, see monotonicity.

• Trendability provides a measure of similarity between the trajectories of a feature measured in
multiple run-to-failure experiments. Trendability of a candidate condition indicator is defined as
the smallest absolute correlation between measurements. For more information, see
trendability.

• Prognosability is a measure of the variability of a feature at failure relative to the range between
its initial and final values. A more prognosable feature has less variation at failure relative to the
range between its initial and final values. For more information, see prognosability.

Selecting a technique activates a new tab with a name that matches the ranking technique. For more
information on this technique-activated tab, see Ranking Technique Tab.

For an example of using prognostic ranking in the app, see “Perform Prognostic Feature Ranking for
a Degrading System Using Diagnostic Feature Designer”.

Rank By — Specify condition variable for classification ranking algorithm to use
condition variable name

 Diagnostic Feature Designer

1-39

Select the condition variable that provides the labels for the classification ranking algorithm to use.

Sort By — Specify ranking technique to sort results by when displaying results from
multiple techniques
ranking technique

Specify the ranking technique to sort by when you are comparing the results of different ranking
methods. When you use a single ranking technique, the app displays the results in order of
importance, as indicated by the ranking score for that technique. When you are comparing the results
for multiple methods, change Sort By to change the technique that drives the sorting order.

Delete Scores — Delete ranking scores from display
no selection (default) | ranking technique

Specify this parameter to eliminate ranking scores for a specific technique. Use this parameter, for
example, when you are comparing the results of multiple rankings, and you want to simplify the
display by eliminating rankings that do not influence your feature selection.

Export — Export features from the app or generate MATLAB code to reproduce your
feature computations in a command-line function
Export features to the MATLAB workspace | Export features to the Classification
Learner | Generate Function for Features | Generate Function for...

Export features to use them or share them outside of the app. Both options open a ranking-sorted
selectable list to choose from. When you export to the MATLAB workspace, you can use command-
line techniques with the features. When you export to the Classification Learner, you open a
Classification Learner session that uses your selected features as input.

• “Export Features to MATLAB Workspace”
• “Export Features to Classification Learner”

If you want to export your entire data set from the app, use Export from the Feature Designer tab.

You can also generate code that reproduces the computations for the variables and features you
select. For more information, see the code generation options description in the “Export” on page 1-
0 section in the Feature Designer tab. When you generate code using Generate Function for
Features from the Feature Ranking tab, Ranking Method defaults to the method you specify in
Sort By.

Ranking Technique Tab

Correlation Importance — Reduce the ranking of redundant features
0 (default) | scalar in the range [0,1]

The correlation importance setting allows you to screen out features that convey similar information
to higher-ranked features. This screening provides a more diverse feature set in the upper ranks.

The criterion for the screening is the set of cross-correlation coefficients a feature has with higher-
ranked features. High cross-correlation between two features implies that both features are
separating condition groups similarly and provide redundant information. With the default value of 0,
the app does not incorporate feature redundancy into ranking scores. As you increase the correlation
importance value, the app increases the influence of feature cross-correlation on the feature ranking
score. This increasing influence progressively lowers the score of redundant features.

1 Functions

1-40

Normalization Scheme — Apply normalization across members for classification ranking
minmax (default) | none | meanvar | softmax

The normalization scheme performs independent normalization across the members for every
feature. Normalization allows more direct comparisons among features. The app displays the defining
equation for the scheme you select directly beneath your selection.

This option is available only for classification ranking techniques.

Apply — Apply parameter settings to new ranking computation
button (default)

Click Apply to calculate ranking with the specified parameters. The Feature Ranking tab in the
plotting area displays the results both graphically and tabularly. This display also includes the results
for the default ranking algorithm, and for any other ranking techniques you calculated previously.

Once you calculate a ranking, the app disables Apply until you change a parameter. You can calculate
ranking within a tab multiple times. Each time you modify the parameters and calculate ranking, the
new results overwrite the previous results in the plotting-area tab.

Close — Close the tab and return control to the feature ranking tab
button (default)

Once you have completed your ranking within the ranking technique tab, close that tab to return
control to the Feature Ranking tab. The Feature Ranking is disabled while any ranking technique
tab is activated.

Code Generation Tab

Frame Policy — Feature table name, frame size, and frame rate
feature table name, Full Signal, None (default) | feature table name, frame size, frame rate

This property is read-only.

The frame policy information reflects the choice you make when you select Export > Generate
Function for... in the Feature Designer tab.

Filter or Sort — Define criteria to refine your code generation choices
empty (default) | string | input, method, or analysis type

Set criteria to refine your options when selecting items for your generated function. All criteria allow
you to overwrite selectable options with a string. String matching is case insensitive. Your filters
apply to all output items, including signals, features, and ranking tables. Criteria include:

• Output — String appearing in the output name, which is the name of the variable, feature, or
ranking table to select for the generated function

• Input — Input signal from which the output variable or feature was computed or feature table
from which the ranking table was computed

• Method — Computation that produced the output item, such as TSA or Kurtosis
• Analysis Type — Data processing, feature processing, or feature ranking

To reset a single filter, delete the contents and click anywhere in the app. To reset all filters at once,
click Reset Filters.

 Diagnostic Feature Designer

1-41

Sort by Selection — Display all selected items
button (default)

Display all selected items together. Use Sort Selected especially when you have used multiple filter
combinations to assemble your codegen selections. All your selections appear together.

Code — Execute function generation
Generate Function button (default)

Click the Generate Function button when you have completed configuring your selections. The app
opens a function that contains computations used for all the output items you selected.

For more information about generating code in the app, see “Automatic Feature Extraction Using
Generated MATLAB Code”.

Programmatic Use
diagnosticFeatureDesigner opens the Diagnostic Feature Designer app.

diagnosticFeatureDesigner(sessionFile) opens the app and loads a previously saved
session. sessionFile is the name of a session data file on the MATLAB path. The data includes all of
the variables and features that you either imported into the app or computed within the app. The data
also includes your app settings and the processing information necessary to generate code.

To save a session, in the Diagnostic Feature Designer app, on the Feature Designer tab, click
Save Session.

More About
Data Ensemble

A data ensemble is a collection of datasets, created by measuring or simulating a system under
varying conditions. An ensemble can be implemented using independent datasets such as matrices or
tables, or in a single collective dataset such as an ensemble table.

For more information on data ensembles and variables, see “Data Ensembles for Condition
Monitoring and Predictive Maintenance”.

Ensemble Member

Each dataset within an ensemble is a member. Members of an ensemble all contain the same
variables. For example, if your ensemble contains data from a set of similar machines, the dataset
corresponding to one of those machines is a member.

Ensemble Table

An ensemble table is an ensemble dataset formatted as a table. Each column of the table represents
one variable. Each row of the table represents one ensemble member. For information on converting
member matrices to an ensemble table, see “Prepare Matrix Data for Diagnostic Feature Designer”.

1 Functions

1-42

Ensemble Datastore Object

Large ensembles can be implemented using an ensemble datastore object. These objects contain a
list of the member files and information for interacting with them. For more information on ensemble
datastore objects, see “Data Ensembles for Condition Monitoring and Predictive Maintenance”.

Data Variable

Data variables make up the main content of the ensemble members, including measured data and
derived data that you use for analysis and development of predictive maintenance algorithms. For
example, you might represent accelerometer data as the data variable Vibration. Data variables
can also include derived values, such as the mean value of a signal, or the frequency of the peak
magnitude in a signal spectrum.

Independent Variable

Independent variables (IV) are the variables that identify or order the members in an ensemble, such
as timestamps, number of operating hours, or machine identifiers. For example, Time is a common
independent variable.

Condition Variable

Condition variables (CV) are variables that describe the fault condition or operating condition of the
ensemble member. Condition variables can record the presence or absence of a fault state, or other
operating conditions such as ambient temperature. Frequently condition variables have specific
possible values described by labels. For example, a condition variable named Health might have two
states described by labels Healthy and Degraded. Condition variables can also be derived values,
such as a single scalar value that encodes multiple fault and operating conditions.

See Also
Topics
“Identify Condition Indicators for Predictive Maintenance Algorithm Design”
“Import and Visualize Ensemble Data in Diagnostic Feature Designer”
“Process Data and Explore Features in Diagnostic Feature Designer”
“Rank and Export Features in Diagnostic Feature Designer”
“Prepare Matrix Data for Diagnostic Feature Designer”
“Isolate a Shaft Fault Using Diagnostic Feature Designer”
“Perform Prognostic Feature Ranking for a Degrading System Using Diagnostic Feature Designer”
“Generate a MATLAB Function in Diagnostic Feature Designer”
“Apply Generated MATLAB Function to Expanded Data Set”
“Explore Ensemble Data and Compare Features Using Diagnostic Feature Designer”
“Organize System Data for Diagnostic Feature Designer”
“Interpret Feature Histograms in Diagnostic Feature Designer”
“Import Data into Diagnostic Feature Designer”
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”
“Data Ensembles for Condition Monitoring and Predictive Maintenance”

Introduced in R2019a

 Diagnostic Feature Designer

1-43

effectivefs
Effective sampling rate of a time vector

Syntax
[Fs,irregular] = effectivefs(T)

Description
effectivefs is a function used in code generated by Diagnostic Feature Designer.

[Fs,irregular] = effectivefs(T) checks the regularity of one-dimensional time array T and
returns the best approximation Fs to the underlying sampling rate. Code that is generated by
Diagnostic Feature Designer uses effectivefs when performing spectral processing and other
computations.

Input Arguments
T — Time array
datetime array | duration array | numeric vector

Time array of sampling instants, expressed as a one-dimensional datetime array, a one-dimensional
duration array, or a numeric vector.

Output Arguments
Fs — Effective sampling rate
numeric scalar

Effective sampling rate, returned as a numeric scalar.

• If T is a duration array, then Fs is in cycles per time unit of T.
• If T is a datetime array, then effectiveFs determines the best value for the time unit based on

the data, and Fs is in cycles per time unit.
• If T is a numeric vector, then Fs is in cycles per second.

irregular — Irregularity indicator
logical

Irregularity indicator, returned as a logical.

• When irregular is true, the sampling instants in T are unevenly spaced. Fs represents the
effective sampling rate of T.

• When irregular is false, the sampling instants in T are evenly spaced. Fs represents the true
sampling rate of T.

See Also
datetime | duration | time2num

1 Functions

1-44

Topics
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”

Introduced in R2020a

 effectivefs

1-45

Estimate Approximate Entropy
Interactively estimate the approximate entropy of a uniformly sampled signal in the Live Editor

Description
The Estimate Approximate Entropy task lets you interactively estimate the approximate entropy of
a uniformly sampled signal. The task automatically generates MATLAB code for your live script. For
more information about Live Editor tasks generally, see “Add Interactive Tasks to a Live Script”.

Approximate entropy is a regularity statistic that quantifies the unpredictability of fluctuations in a
time series. A relatively higher value of approximate entropy reflects the likelihood that similar
patterns of observations are not followed by additional similar observations.

Open the Task
To add the Estimate Approximate Entropy task to a live script in the MATLAB Editor:

• On the Live Editor tab, select Task > Estimate Approximate Entropy.
• In a code block in your script, type a relevant keyword, such as approximate or approximate

entropy. Select Estimate Approximate Entropy from the suggested command completions.

Examples

Estimate Approximate Entropy in the Live Editor

Use the Estimate Approximate Entropy task in the Live Editor to interactively estimate the
approximate entropy of a uniformly sampled signal. Experiment with different values for lag,

1 Functions

1-46

embedding dimension and radius. The task automatically generates code reflecting your selections.
Open this example to see a preconfigured script containing the Estimate Approximate Entropy
task.

For this example, consider 'approxEntData.mat' which contains uniformly sampled signal X,
embedding dimension dim, and the time delay lag.

load('approxEntData.mat','X','dim','lag')

To approximate entropy of the signal X, open the Estimate Approximate Entropy task in the Live
Editor. On the Live Editor tab, select Task > Estimate Approximate Entropy. In the task, select
signal X.

Select dim for the Embedding Dimension and lag for the Time Lag dropdown menu respectively.
If you do not know the embedding dimension and the time lag for your signal, use the Reconstruct
Phase Space task to compute the values.

Evaluate whether the value of approximate entropy is affected drastically by changing the Radius
field and observe the change in value in the Live Editor output. You can toggle displaying the output
of the approximate entropy value in the Live Editor output using the Output Display option.

 Estimate Approximate Entropy

1-47

The task generates code in your live script. The generated code reflects the parameters and options
you specify. To see the generated code, click at the bottom of the task parameter area. The task
expands to display the generated code.

By default, the generated code uses approxEnt as the name of the output variable. To specify a
different output variable name, enter a new name in the summary line at the top of the task. For
instance, change the name to aEntropy.

The task updates the generated code to reflect the new variable name, and the new variable
aEntropy appears in the MATLAB workspace.

Parameters
Select Signal

Signal — Uniformly sampled time-domain signal
array | timetable

Select a uniformly sampled time-domain signal in array or timetable format. If the signal has multiple
columns, the Estimate Approximate Entropy task computes the approximate entropy by treating it
as a multivariate signal. If the signal is a row vector, then the Estimate Approximate Entropy task
treats it as a univariate signal.

Specify Approximate Entropy Parameters

Embedding Dimension — Number of dimensions of phase space vectors
scalar | vector

Specify the number of dimensions of phase space vectors as a scalar or vector from the MATLAB
workspace. When you specify the embedding dimension as a scalar, then every column of the
uniformly sampled signal is computed using the same embedding dimension value.

1 Functions

1-48

If you do not know the value of embedding dimension for your signal, then you can compute it using
the Reconstruct Phase Space task.

Time Lag — Time lag between successive phase vectors
scalar | vector

Specify time lag between successive phase vectors as a scalar or vector from the MATLAB workspace.
When you specify the time lag as a scalar, then the Estimate Approximate Entropy task uses the
same time delay value to estimate the value of approximate entropy for all the columns of the
uniformly sampled signal. If you specify the embedding dimension as a vector, then specify the time
lag also as a vector of the same length.

If you do not know the value of time lag for your signal, then you can compute it using the
Reconstruct Phase Space task.

Radius — Similarity criterion
'Auto' (default) | scalar

Specify similarity criterion as a scalar. The similarity criterion, also called radius of similarity, is a
tuning parameter that is used to identify a meaningful range in which fluctuations in data are to be
considered similar.

Visualize Results

Output Display — Toggle result display in the Live Editor output
on (default) | off

Toggle to display the value of approximate entropy in the Live Editor output.

See Also
Reconstruct Phase Space | approximateEntropy | correlationDimension |
lyapunovExponent | phaseSpaceReconstruction

Topics
“Add Interactive Tasks to a Live Script”

Introduced in R2019b

 Estimate Approximate Entropy

1-49

Estimate Correlation Dimension
Estimate the correlation dimension of a uniformly sampled signal in the Live Editor

Description
The Estimate Correlation Dimension task lets you interactively estimate the correlation dimension
of a uniformly sampled signal. The task automatically generates MATLAB code for your live script.
For more information about Live Editor tasks generally, see “Add Interactive Tasks to a Live Script”.

Correlation dimension is the measure of dimensionality of the space occupied by a set of random
points. Correlation dimension is estimated as the slope of the correlation integral versus the range of
radius of similarity. Use correlation dimension as a characteristic measure to distinguish between
deterministic chaos and random noise, to detect potential faults.

Open the Task
To add the Estimate Correlation Dimension task to a live script in the MATLAB Editor:

1 Functions

1-50

• On the Live Editor tab, select Task > Estimate Correlation Dimension.
• In a code block in your script, type a relevant keyword, such as correlation dimension or

correlation dimension. Select Estimate Correlation Dimension from the suggested
command completions.

Examples

Estimate Correlation Dimension in the Live Editor

Use the Estimate Correlation Dimension task in the Live Editor to interactively estimate the
correlation dimension of a uniformly sampled signal. Experiment with different values for lag,
embedding dimension, similarity radius and number of points to align the linear fit line with the
original data plot. The task automatically generates code reflecting your selections. Open this
example to see a preconfigured script containing the Estimate Correlation Dimension task.

For this example, consider 'corrDimData.mat' which contains reconstructed phase space signal
phaseSpace.

load('corrDimData.mat','phaseSpace')

To estimate the correlation dimension of the signal phaseSpace, open the Estimate Correlation
Dimension in the Live Editor. On the Live Editor tab, select Task > Estimate Correlation
Dimension. In the task, select signal phaseSpace.

Since the selected signal is a phase space signal, select Phase space from the Signal Type
dropdown menu.

 Estimate Correlation Dimension

1-51

The Estimate Correlation Dimension task creates the correlation dimension plot with default
values for the similarity radius and the number of points.

If your linear fit line does not align with the original data line using the default similarity radius
values, try different values in the Similarity Radius Min, Similarity Radius Max and Number of
Points fields until the alignment is satisfactory. For this example, use the minimum value of 0.08 and
maximum value of 5 for the best alignment. The default value of 10 points provides good alignment
for the signal phaseSpace.

1 Functions

1-52

You can toggle displaying the output of the correlation dimension value in the Live Editor output
using the Output Display option.

The task generates code in your live script. The generated code reflects the parameters and options
you specify. To see the generated code, click at the bottom of the task parameter area. The task
expands to display the generated code.

 Estimate Correlation Dimension

1-53

By default, the generated code uses corrDim as the name of the output variable. To specify a
different output variable name, enter a new name in the summary line at the top of the task. For
instance, change the name to cDimension.

The task updates the generated code to reflect the new variable name, and the new variable
cDimension appears in the MATLAB workspace. The value of correlation dimension is directly
proportional to the level of chaos in the system, that is, a higher value of cDimension represents a
high level of chaotic complexity in the system.

• “Reconstruct Phase Space and Estimate Condition Indicators Using Live Editor Tasks”

Parameters
Select Signal

Signal — Uniformly sampled time-domain signal
array | timetable

Select a uniformly sampled time-domain signal in array or timetable format from the MATLAB
workspace. If the signal has multiple columns, the Estimate Correlation Dimension task computes
the correlation dimension by treating it as a multivariate signal. If the signal is a row vector, then the
Estimate Correlation Dimension task treats it as a univariate signal.

Signal Type — Type of selected signal
'Time Domain' | 'Phase space'

Specify the type of the selected signal as either 'Time Domain' or 'Phase space'. If you specify the
signal type as:

• 'Time Domain', then also specify the embedding dimension and time lag for your signal.

1 Functions

1-54

• 'Phase space', then the Estimate Correlation Dimension task automatically infers the
embedding dimension and time lag using the phase space information.

Specify Correlation Dimension Parameters

Embedding Dimension — Number of dimensions of phase space vectors
scalar | vector

Specify the number of dimensions of phase space vectors as a scalar or vector from the MATLAB
workspace. When you specify the embedding dimension as a scalar, then the Estimate Correlation
Dimension task uses the same embedding dimension value to estimate the value of correlation
dimension for all the columns of the uniformly sampled signal.

The Embedding Dimension drop down is active only when you specify the signal type as 'Time
Domain'. For phase space signals, the Estimate Correlation Dimension task automatically
computes the embedding dimension from the phase space data.

If you do not know the value of embedding dimension for your signal, then you can compute it using
the Reconstruct Phase Space task.

Time Lag — Time lag between successive phase vectors
scalar | vector

Specify time lag between successive phase vectors as a scalar or vector from the MATLAB workspace.
When you specify the time lag as a scalar, then the Estimate Correlation Dimension task uses the
same time delay value to estimate the value of correlation dimension for all the columns of the
uniformly sampled signal. If you specify the embedding dimension as a vector, then specify the time
lag also as a vector of the same length.

The Time Lag drop down is active only when you specify the signal type as 'Time Domain'. For
phase space signals, the Estimate Correlation Dimension task automatically computes the time lag
from the phase space data.

If you do not know the value of time lag for your signal, then you can compute it using the
Reconstruct Phase Space task.

Similarity Radius Min — Minimum radius of similarity
max radius/1000 (default) | scalar

Specify the minimum radius of similarity to be used to compute the number of with-in range points
for correlation dimension estimation. Try different values such that the linear fit line aligns with the
original data line in the plot.

Similarity Radius Max — Maximum radius of similarity
0.2*sqrt(trace(cov(signal))) (default) | scalar

Specify the maximum radius of similarity to be used to compute the number of with-in range points
for correlation dimension estimation. Try different values such that the linear fit line aligns with the
original data line in the plot.

Number of Points — Number of points between the minimum and maximum radius
10 (default) | positive scalar integer

Specify the number of points between the maximum and minimum radius of similarity. Choose an
appropriate number of points based on the resolution required to compute the correlation dimension.

 Estimate Correlation Dimension

1-55

Visualize Results

Output Display — Toggle result display in the Live Editor output
on (default) | off

Toggle to display the value of correlation dimension in the Live Editor output.

See Also
Reconstruct Phase Space | approximateEntropy | correlationDimension |
lyapunovExponent | phaseSpaceReconstruction

Topics
“Reconstruct Phase Space and Estimate Condition Indicators Using Live Editor Tasks”
“Add Interactive Tasks to a Live Script”

Introduced in R2019b

1 Functions

1-56

Estimate Lyapunov Exponent
Interactively estimate the Lyapunov exponent of a uniformly sampled signal in the Live Editor

Description
The Estimate Lyapunov Exponent task lets you interactively estimate the Lyapunov exponent of a
uniformly sampled signal. The task automatically generates MATLAB code for your live script. For
more information about Live Editor tasks generally, see “Add Interactive Tasks to a Live Script”.

Use the Lyapunov exponent to characterize the rate of separation of infinitesimally close trajectories
in phase space to distinguish different attractors. The Lyapunov exponent is useful in quantifying the
level of chaos in a system, which in turn can be used to detect potential faults. A negative Lyapunov
exponent indicates convergence, while a positive Lyapunov exponents indicates divergence and
chaos.

Open the Task
To add the Estimate Lyapunov Exponent task to a live script in the MATLAB Editor:

 Estimate Lyapunov Exponent

1-57

• On the Live Editor tab, select Task > Estimate Lyapunov Exponent.
• In a code block in your script, type a relevant keyword, such as Lyapunov or Lyapunov

exponent. Select Estimate Lyapunov Exponent from the suggested command completions.

Examples

Estimate Lyapunov Exponent in the Live Editor

Use the Estimate Lyapunov Exponent task in the Live Editor to interactively estimate the Lyapunov
exponent of a uniformly sampled signal. Experiment with different values for lag, embedding
dimension, expansion range and mean period to align the linear fit line with the original data plot.
The task automatically generates code reflecting your selections. Open this example to see a
preconfigured script containing the Estimate Lyapunov Exponent task.

For this example, consider 'lyapExpData.mat' which contains reconstructed phase space signal
phaseSpace sampled at 100 Hz.

load('lyapExpData.mat','phaseSpace')

To estimate the Lyapunov exponent of the signal phaseSpace, open the Estimate Lyapunov
Exponent in the Live Editor. On the Live Editor tab, select Task > Estimate Lyapunov Exponent.
In the task, select signal phaseSpace.

Since the selected signal is a phase space signal, select Phase space from the Signal Type
dropdown menu. The signal was sampled at 100 Hz, hence specify this value in the Sampling Rate
field.1

1 Functions

1-58

The Estimate Lyapunov Exponent task automatically computes the embedding dimension and lag
from the phase space data and creates the Lyapunov exponent plot with default values for expansion
range and mean period.

If your linear fit line does not align with the original data line using the default expansion range
values, try different values in the Expansion Range Min, Expansion Range Max and Mean
Period fields until the alignment is satisfactory. For this example, use the minimum value of 3 and
maximum value of 7 for the best alignment. The default mean period value of 166 provides good
alignment for the signal phaseSpace.

 Estimate Lyapunov Exponent

1-59

You can toggle displaying the output of the Lyapunov exponent value in the Live Editor output using
the Output Display option.

The task generates code in your live script. The generated code reflects the parameters and options
you specify. To see the generated code, click at the bottom of the task parameter area. The task
expands to display the generated code.

1 Functions

1-60

By default, the generated code uses lyapExp as the name of the output variable. To specify a
different output variable name, enter a new name in the summary line at the top of the task. For
instance, change the name to lExponent.

The task updates the generated code to reflect the new variable name, and the new variable
lExponent appears in the MATLAB workspace. A negative Lyapunov exponent indicates
convergence, while positive Lyapunov exponents demonstrate divergence and chaos. The magnitude
of lExponent is an indicator of the rate of convergence or divergence of the infinitesimally close
trajectories.

• “Reconstruct Phase Space and Estimate Condition Indicators Using Live Editor Tasks”

Parameters
Select Signal

Signal — Uniformly sampled time-domain signal
array | timetable

Select a uniformly sampled time-domain signal in array or timetable format. If the signal has multiple
columns, the Estimate Lyapunov Exponent task computes the Lyapunov exponent by treating it as
a multivariate signal. If the signal is a row vector, then the Estimate Lyapunov Exponent task
treats it as a univariate signal.

Signal Type — Type of selected signal
'Time Domain' | 'Phase space'

Specify the type of the selected signal as either 'Time Domain' or 'Phase space'. If you specify the
signal type as:

• 'Time Domain', then also specify the embedding dimension and time lag for your signal.
• 'Phase space', then the Estimate Correlation Dimension task automatically computes the

embedding dimension and time lag using the phase space information.

Sampling Rate — Sampling frequency of the data set
2π (default) | scalar

Specify the sampling frequency of the data set as a scalar. The Estimate Lyapunov Exponent task
uses a value of 2π or 6.283 Hz by default. When the signal data is in a timetable, the Estimate
Lyapunov Exponent task infers the sampling rate from the data set.

Specify Lyapunov Exponent Parameters

Embedding Dimension — Number of dimensions of phase space vectors
scalar | vector

Specify the number of dimensions of phase space vectors as a scalar or vector from the MATLAB
workspace. When you specify the embedding dimension as a scalar, then the Estimate Lyapunov

 Estimate Lyapunov Exponent

1-61

Exponent task uses the same embedding dimension value to estimate the value of Lyapunov
exponent for all the columns of the uniformly sampled signal.

The Embedding Dimension drop down is active only when you specify the signal type as 'Time
Domain'. For phase space signals, the Estimate Lyapunov Exponent task automatically computes
the embedding dimension from the phase space data.

If you do not know the value of embedding dimension for your signal, then you can compute it using
the Reconstruct Phase Space task.

Time Lag — Time lag between successive phase vectors
scalar | vector

Specify time lag between successive phase vectors as a scalar or vector from the MATLAB workspace.
When you specify the time lag as a scalar, then the Estimate Lyapunov Exponent task uses the
same time delay value to estimate the value of Lyapunov exponent for all the columns of the
uniformly sampled signal. If you specify the embedding dimension as a vector, then specify the time
lag also as a vector of the same length.

The Time Lag drop down is active only when you specify the signal type as 'Time Domain'. For
phase space signals, the Estimate Lyapunov Exponent task automatically computes the time lag
from the phase space data.

If you do not know the value of time lag for your signal, then you can compute it using the
Reconstruct Phase Space task.

Expansion Range Min — Minimum expansion step value
1 (default) | positive scalar integer

Specify the minimum expansion step value used to compute the expansion rate to estimate the
Lyapunov exponent. Try different values such that the linear fit line aligns with the original data line
in the plot.

Expansion Range Max — Maximum expansion step value
5 (default) | positive scalar integer

Specify the maximum expansion step value used to compute the expansion rate to estimate the
Lyapunov exponent. Try different values such that the linear fit line aligns with the original data line
in the plot.

Mean Period — Threshold value for nearest neighbor computation
ceil(fs/max(meanfreq(signal,sampling rate))) (default) | positive scalar integer

Specify the threshold value to compute the nearest neighbor i* for a point i to estimate the largest
Lyapunov exponent. For more information, see lyapunovExponent.

Visualize Results

Output Display — Toggle result display in the Live Editor output
on (default) | off

Toggle to display the value of Lyapunov exponent in the Live Editor output.

1 Functions

1-62

See Also
Reconstruct Phase Space | approximateEntropy | correlationDimension |
lyapunovExponent | phaseSpaceReconstruction

Topics
“Reconstruct Phase Space and Estimate Condition Indicators Using Live Editor Tasks”
“Add Interactive Tasks to a Live Script”

Introduced in R2019b

 Estimate Lyapunov Exponent

1-63

Extract Spectral Features
Interactively extract spectral fault band metrics in the Live Editor

Description
The Extract Spectral Features task lets you interactively extract spectral fault band metrics. The
task helps with analyzing and understanding spectral data. Using a comprehensive interface, you can
add components to represent various bearings, gear meshes, or other parts of your hardware setup.
As you set the physical parameters of these components, the Extract Spectral Features Live Editor
task will plot fault frequency bands at the characteristic frequencies of the components. You can
overlay power spectrum data on the fault band plot to associate various peaks in the data with the
components' characteristic frequencies. This can make fault detection and fault isolation easier, as
changes in the power spectrum data can easily be traced back to the physical components causing
them. In addition to a plot of the characteristic frequencies and the power spectrum data, the task
will generate spectral metrics of the data within each characteristic frequency band. The output
metrics table containing the peak amplitude, peak frequency, and band power of each band aids in
characterizing potential mechanical faults. The task automatically generates MATLAB code for your
live script. For more information about Live Editor tasks generally, see “Add Interactive Tasks to a
Live Script”.

1 Functions

1-64

Open the Task
To add the Extract Spectral Features task to a live script in the MATLAB Editor:

• On the Live Editor tab, select Task > Extract Spectral Features.
• In a code block in your script, type a relevant keyword, such as fault bands or metrics. Select

Extract Spectral Features from the suggested command completions.

Parameters
Select power spectrum data

Frequency vector — Frequencies corresponding to the power spectrum data
vector

Select a vector of frequencies from the MATLAB workspace that correspond to your power spectrum
data.

Power spectrum magnitude — Power spectrum magnitude data
vector

Select a vector containing the power spectrum magnitudes from the MATLAB workspace.

Configure components

Add component — Bearing, gear mesh or custom hardware representation
'Bearing' | 'Gear mesh' | 'Custom'

Choose between adding a bearing, gear mesh or a custom component. You can name your component
and then click the Add button. You can set the physical characteristics of these components using the
parameters below. The Extract Spectral Features Live Editor task will plot fault frequency bands at
the characteristic frequencies of the components.

Bearing Component Parameters

Enable component — Toggle to enable or disable component for spectral metrics
computation
on (default) | off

You can toggle this option to enable or disable the component from being included in the spectral
metrics computation. Disabling the component will also remove its fault bands from the plot. Use the
Delete button to permanently remove a component.

Number of balls — Number of balls or rollers in the bearing
10 (default) | positive integer

Specify the number of rolling elements in the bearing.

Pitch diameter — Pitch diameter of the bearing
35 (default) | positive scalar

Pitch diameter of the bearing is the diameter of the circle that the center of the ball or roller travels
during the bearing rotation.

 Extract Spectral Features

1-65

Rotational speed — Rotational speed of the shaft or inner race of the bearing
60 (default) | positive scalar

Rotational speed of the shaft or inner race of the bearing. It is the fundamental frequency around
which the Extract Spectral Features live task generates the fault frequency bands. The units must
be consistent with the unit of the frequency vector.

Contact angle — Bearing contact angle
0 (default) | non-negative scalar

Contact angle in degrees between a plane perpendicular to the ball or roller axis and the line joining
the two raceways.

Ball diameter — Diameter of the ball or roller
10 (default) | positive scalar

Diameter of the ball or roller in the bearing.

Harmonics — Harmonics of the fundamental frequency to be included
1 (default) | vector of positive integers

Specify the harmonics of the fundamental frequency to be included in the plot and in the spectral
metrics computation.

Sidebands — Sidebands around the fundamental frequency and its harmonics to be
included
0 (default) | vector of nonnegative integers

Specify the sidebands around the fundamental frequency and its harmonics to be included in the plot
and in the spectral metrics computation.

Domain — Units of the fault band frequencies
'frequency' (default) | 'order'

Specify the units of the fault band frequencies as either 'frequency' or 'order'. Select:

• 'frequency' if you have the fault bands in the same units as the Rotational speed.
• 'order' if you have the fault bands as number of rotations relative to the inner race rotation

Rotational speed.

Band width — Width of the frequency bands centered at the nominal fault frequencies
auto (default) | positive scalar

Specify the width of the frequency bands centered at the nominal fault frequencies as a positive
scalar. Uncheck the Auto option to specify the width value manually.

Gear Mesh Component Parameters

Enable component — Toggle to enable or disable component for spectral metrics
computation
on (default) | off

You can toggle this option to enable or disable the component from being included in the spectral
metrics computation. Disabling the component will also remove its fault bands from the plot. Use the
Delete button to permanently remove a component.

1 Functions

1-66

Input gear teeth — Number of teeth on the input gear
10 (default) | positive integer

Specify the number of teeth on the input gear as a positive integer.

Output gear teeth — Number of teeth on the output gear
40 (default) | positive integer

Specify the number of teeth on the output gear as a positive integer.

Rotational speed — Rotational speed of the input gear
60 (default) | positive scalar

Specify the rotational speed of the input gear as a positive scalar. It is the fundamental frequency
around which the Extract Spectral Features live task generates the fault frequency bands. The
units must be consistent with the unit of the frequency vector.

Harmonics — Harmonics of the fundamental frequency to be included
1 (default) | vector of positive integers

Specify the harmonics of the fundamental frequency to be included in the plot and in the spectral
metrics computation.

Sidebands — Sidebands around the fundamental frequency and its harmonics to be
included
0 (default) | vector of nonnegative integers

Specify the sidebands around the fundamental frequency and its harmonics to be included in the plot
and in the spectral metrics computation.

Domain — Units of the fault band frequencies
'frequency' (default) | 'order'

Specify the units of the fault band frequencies as either 'frequency' or 'order'. Select:

• 'frequency' if you have the fault bands in the same units as the Rotational speed.
• 'order' if you have the fault bands as number of rotations relative to the Rotational speed.

Band width — Width of the frequency bands centered at the nominal fault frequencies
auto (default) | positive scalar

Specify the width of the frequency bands centered at the nominal fault frequencies as a positive
scalar. Uncheck the Auto option to specify the width value manually.

Custom Component Parameters

Enable component — Toggle to enable or disable component for spectral metrics
computation
on (default) | off

You can toggle this option to enable or disable the component from being included in the spectral
metrics computation. Disabling the component will also remove its fault bands from the plot. Use the
Delete button to permanently remove a component.

Frequency — Fundamental frequency of interest
60 (default) | positive scalar

 Extract Spectral Features

1-67

Specify fundamental frequency of interest as a positive scalar. The Extract Spectral Features live
task constructs the fault frequency bands around the fundamental frequency. For instance, to
construct fault bands for a faulty induction motor, the mains frequency of 60 Hz is the fundamental
frequency of interest. Similarly, to generate fault bands for a faulty gear train, the input shaft
frequency is the fundamental frequency.

Harmonics — Harmonics of the fundamental frequency to be included
1 (default) | vector of positive integers

Specify the harmonics of the fundamental frequency to be included in the plot and in the spectral
metrics computation.

Sidebands — Sidebands around the fundamental frequency and its harmonics to be
included
0 (default) | vector of nonnegative integers

Specify the sidebands around the fundamental frequency and its harmonics to be included in the plot
and in the spectral metrics computation.

Separation type — Type of separation between successive sidebands
'additive' (default) | 'multiplicative'

Specify the type of separation between successive sidebands as either 'additive' or
'multiplicative'. Select:

• 'additive', to set the separation between successive sidebands to 0.1*F1 value, where F1 is
the distance of the first sideband from the fundamental frequency.

• 'multiplicative', to set the separation between successive sidebands proportional to both the
harmonic order and the sideband value.

Separation — Separation value between successive sidebands
Auto (default) | positive scalar

Specify the separation value between successive sidebands as a positive scalar. Uncheck the Auto
option to specify the separation value manually.

Band width — Width of the frequency bands centered at the nominal fault frequencies
auto (default) | positive scalar

Specify the width of the frequency bands centered at the nominal fault frequencies as a positive
scalar. Uncheck the Auto option to specify the width value manually.

Folding — Toggle to specify whether negative nominal fault frequencies have to be folded
about the frequency origin
off (default) | on

Toggle to specify whether negative nominal fault frequencies have to be folded about the frequency
origin. If you turn Folding on, then the Extract Spectral Features live task folds the negative
nominal fault frequencies about the frequency origin by taking their absolute values such that the
folded fault bands always fall in the positive frequency intervals. The folded fault bands are computed
as max 0, F − W

2 , F + W
2 , where W is the Band width and F is the Frequency.

1 Functions

1-68

Display results

Spectral metrics — Toggle to enable or disable the display of spectral metrics
off (default) | on

Toggle this option enable or disable the display of spectral metrics. When the option is checked, then
the Extract Spectral Features live task displays the metrics as a 1xN table, where N = 3*size((F
+S),1)+1, that is three metrics per frequency range and the total band power over the frequency
range.

The live task returns the following spectral metrics for each frequency range:

• Peak Amplitude — Peak amplitude value for each specified frequency range.
• Peak Frequency — Peak frequency value for each specified frequency range.
• Band Power — Average power of each frequency range. For more information on band power, see

bandpower.
• Total Band Power — Sum of individual band powers for the set of specified frequency ranges.

See Also
bearingFaultBands | faultBandMetrics | faultBands | gearMeshFaultBands

Introduced in R2021a

 Extract Spectral Features

1-69

faultBandMetrics
Spectral metrics for the specified fault frequency bands of the power spectral density (PSD)

Syntax
spectralMetrics = faultBandMetrics(psd,freqGrid,FB)
spectralMetrics = faultBandMetrics(X,FB)
spectralMetrics = faultBandMetrics(T,FB)
spectralMetrics = faultBandMetrics(___ ,Name,Value)
[spectralMetrics,info] = faultBandMetrics(___)

Description
spectralMetrics = faultBandMetrics(psd,freqGrid,FB)returns a set of spectral metrics
spectralMetrics for the power spectral density (PSD) data psd defined at the frequencies
specified in freqGrid for each fault frequency range in FB.

The output spectralMetrics includes peak amplitude, peak frequency, and band powers for each
frequency range specified in FB along with the total band power across all frequency bands.

spectralMetrics = faultBandMetrics(X,FB) returns a set of spectral metrics
spectralMetrics for the PSD and frequency grid data specified in the cell array X.
faultBandMetrics assumes that the last column of data in each cell of X contains the frequency
grid while the first column contains PSD data. If the data is not in the same order, then use the
'SpectrumColumn' and 'FrequencyColumn' name-value pair arguments to specify the column
numbers or names of the PSD data and the frequency grid, respectively. The output
spectralMetrics has as many rows as the length of cell array X.

spectralMetrics = faultBandMetrics(T,FB) returns a set of spectral metrics
spectralMetrics for the PSD and frequency grid data specified in the dataset T.

T can be a table/timetable or an ensemble, where a member variable of matrices or tables should
contain the PSD data corresponding to one experiment. The last column of data in the member
variable should contain the frequency grid and the first column should contain the PSD data.

If T is not in the same order, then use the 'SpectrumColumn' and 'FrequencyColumn' name-value
pair arguments to specify the column numbers or names of the PSD data and the frequency grid,
respectively. The output spectralMetrics has as many rows as the number of rows in dataset T.

spectralMetrics = faultBandMetrics(___ ,Name,Value) allows you to specify additional
parameters using one or more name-value pair arguments.

[spectralMetrics,info] = faultBandMetrics(___) also returns a structure info with
additional information about the table or fileEnsembleDatastore object variables used to
compute spectralMetrics.

Examples

1 Functions

1-70

Frequency Bands and Spectral Metrics of Gear Train

For this example, consider a simple gear set with an 8-toothed pinion on the input shaft meshing with
a 42-toothed spur gear on the output shaft. Assume that the input shaft is driven at 20 Hz. The
dataset motorSignal.mat contains vibration data for the gear mesh sampled at 1500 Hz.

First, construct the gear mesh frequency bands using the physical characteristics of the gear set.
Construct the frequency bands with the first 3 sidebands and specify the 'Domain' as 'order'.

Ni = 8;
No = 42;
FR = 20;
FB = gearMeshFaultBands(FR,Ni,No,'Sidebands',1:3,'Domain','order')

FB = 15×2

 0.9500 1.0500
 0.1405 0.2405
 3.9500 4.0500
 4.9500 5.0500
 5.9500 6.0500
 6.9500 7.0500
 8.9500 9.0500
 9.9500 10.0500
 10.9500 11.0500
 7.3786 7.4786
 ⋮

FB is a 15x2 array which includes the primary frequencies and their sidebands.

Load the vibration data and compute PSD and frequency grid using pspectrum. Use a frequency
resolution of 0.5.

load('motorSignal.mat','C');
fs = 1500;
[psd,freqGrid] = pspectrum(C,fs,'FrequencyResolution',0.5);

Now, use the frequency bands and PSD data to compute the spectral metrics.

spectralMetrics = faultBandMetrics(psd,freqGrid,FB)

spectralMetrics=1×46 table
 PeakAmplitude1 PeakFrequency1 BandPower1 PeakAmplitude2 PeakFrequency2 BandPower2 PeakAmplitude3 PeakFrequency3 BandPower3 PeakAmplitude4 PeakFrequency4 BandPower4 PeakAmplitude5 PeakFrequency5 BandPower5 PeakAmplitude6 PeakFrequency6 BandPower6 PeakAmplitude7 PeakFrequency7 BandPower7 PeakAmplitude8 PeakFrequency8 BandPower8 PeakAmplitude9 PeakFrequency9 BandPower9 PeakAmplitude10 PeakFrequency10 BandPower10 PeakAmplitude11 PeakFrequency11 BandPower11 PeakAmplitude12 PeakFrequency12 BandPower12 PeakAmplitude13 PeakFrequency13 BandPower13 PeakAmplitude14 PeakFrequency14 BandPower14 PeakAmplitude15 PeakFrequency15 BandPower15 TotalBandPower
 ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ _______________ _______________ ___________ _______________ _______________ ___________ _______________ _______________ ___________ _______________ _______________ ___________ _______________ _______________ ___________ _______________ _______________ ___________ ______________

 0.82564 1 0.1542 0.057165 0.1875 0.011175 0.29169 4 0.055249 0.011486 5 0.0021583 0.070117 6 0.013877 1.0514 7 0.21675 0.0077621 9 0.001577 0.004752 10 0.0010282 0.012155 11 0.0025085 7.7318 7.4375 1.4057 4.2222 7.625 0.79678 0.92456 7.8125 0.1924 0.030489 8.1875 0.0060835 0.069138 8.375 0.012642 0.068649 8.5625 0.012578 2.8848

spectralMetrics is a 1x46 table with peak amplitude, peak frequency and band power calculated
for each frequency range in FB. The last column in spectralMetrics is the total band power,
computed across all 15 frequencies in FB.

Frequency Bands and Spectral Metrics of Ball Bearing

For this example, consider a ball bearing with a pitch diameter of 12 cm with 10 rolling elements.
Each rolling element has a diameter of 0.5 cm. The outer race remains stationary as the inner race is

 faultBandMetrics

1-71

driven at 25 Hz. The contact angle of the ball is 0 degrees. The dataset bearingData.mat contains
power spectral density (PSD) and its respective frequency data for the bearing vibration signal in a
table.

First, construct the bearing frequency bands including the first 3 sidebands using the physical
characteristics of the ball bearing.

FR = 25;
NB = 10;
DB = 0.5;
DP = 12;
beta = 0;
FB = bearingFaultBands(FR,NB,DB,DP,beta,'Sidebands',1:3)

FB = 14×2

 118.5417 121.0417
 53.9583 56.4583
 78.9583 81.4583
 103.9583 106.4583
 153.9583 156.4583
 178.9583 181.4583
 203.9583 206.4583
 262.2917 264.7917
 274.2708 276.7708
 286.2500 288.7500
 ⋮

FB is a 14x2 array which includes the primary frequencies and their sidebands.

Load the PSD data. bearingData.mat contains a table X where PSD is contained in the first column
and the frequency grid is in the second column, as cell arrays respectively.

load('bearingData.mat','X')
X

X=1×2 table
 Var1 Var2
 ________________ ________________

 {12001x1 double} {12001x1 double}

Compute the spectral metrics using the PSD data in table X and the frequency bands in FB.

spectralMetrics = faultBandMetrics(X,FB)

spectralMetrics=1×43 table
 PeakAmplitude1 PeakFrequency1 BandPower1 PeakAmplitude2 PeakFrequency2 BandPower2 PeakAmplitude3 PeakFrequency3 BandPower3 PeakAmplitude4 PeakFrequency4 BandPower4 PeakAmplitude5 PeakFrequency5 BandPower5 PeakAmplitude6 PeakFrequency6 BandPower6 PeakAmplitude7 PeakFrequency7 BandPower7 PeakAmplitude8 PeakFrequency8 BandPower8 PeakAmplitude9 PeakFrequency9 BandPower9 PeakAmplitude10 PeakFrequency10 BandPower10 PeakAmplitude11 PeakFrequency11 BandPower11 PeakAmplitude12 PeakFrequency12 BandPower12 PeakAmplitude13 PeakFrequency13 BandPower13 PeakAmplitude14 PeakFrequency14 BandPower14 TotalBandPower
 ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ _______________ _______________ ___________ _______________ _______________ ___________ _______________ _______________ ___________ _______________ _______________ ___________ _______________ _______________ ___________ ______________

 121 121 314.43 56.438 56.438 144.95 81.438 81.438 210.57 106.44 106.44 276.2 156.44 156.44 407.45 181.44 181.44 473.07 206.44 206.44 538.7 264.75 264.75 691.77 276.75 276.75 723.27 288.69 288.69 754.61 312.69 312.69 817.61 324.63 324.63 848.94 336.63 336.63 880.44 13.188 13.188 31.418 7113.4

spectralMetrics is a 1x43 table with peak amplitude, peak frequency and band power calculated
for each frequency range in FB. The last column in spectralMetrics is the total band power,
computed across all 14 frequencies in FB.

1 Functions

1-72

Compute Fault Band Metrics from Ensemble Datastore

Consider psdData.zip, a collection of 4 data sets where each file contains separate tables for the
tachometer, vibration, and power spectrum data of a bearing. It also contains the read file for the
ensemble hReadData.m.

Each dataset contains a table spectrum with 4 columns, where the first column F contains the
frequency grid data, and the other three columns named Pxx, Pyy and Pzz contain spectral data.

Extract the compressed files, read the data in the table, and create a fileEnsembleDatastore
object using the table data. For more information on creating a file ensemble datastore, see
fileEnsembleDatastore.

unzip psdData.zip;
ens = fileEnsembleDatastore(pwd,'.mat');
% Make sure that the function for reading data is on path
addpath(fullfile(matlabroot,'examples','predmaint','main'))
ens.ReadFcn = @hReadData;
ens.DataVariables = {'tach','vibration','spectrum'};
ens.SelectedVariables = ens.DataVariables;

Assuming fault bands FB, compute the spectral metrics. Specify the spectral column, data variable
and frequency columns to be used.

FB = [10,20;40,50;60,70]

FB = 3×2

 10 20
 40 50
 60 70

[spectralMetrics,info] = faultBandMetrics(ens,FB, ...
 'SpectrumColumn','Pxx', ...
 'FrequencyColumn','F', ...
 'DataVariable','spectrum');
size(spectralMetrics)

ans = 1×2

 4 10

The output table spectralMetrics contains 4 rows of metrics where each row corresponds to one
data set.

info

info = struct with fields:
 DataVariable: 'spectrum'
 FrequencyColumn: 'F'
 SpectrumColumn: 'Pxx'

 faultBandMetrics

1-73

The structure info contains information about the data variable, frequency column and spectrum
column used to compute the metrics.

rmpath(fullfile(matlabroot,'examples','predmaint','main')) % Reset path

Input Arguments
psd — Power spectral density data
vector | array

Power spectral density (PSD) data, specified as a vector or array. When psd is

• A vector, then faultBandMetrics converts it to a column vector and treats psd as a single
channel.

• An array, then specify the PSD data column to be used with the 'SpectrumColumn' name-value
pair.faultBandMetrics computes spectral metrics only for the PSD data column you specify.

For more information on computing PSD, see pspectrum.

freqGrid — Frequency grid data
vector

Frequency grid data corresponding to psd, specified as a vector. For more information on computing
spectrum frequencies, see pspectrum.

FB — Fault frequency bands
Nx2 array

Fault frequency bands, specified as an Nx2 array, where N is the number of fault frequencies. The
frequency bands specified in FB must be contained within the range of the frequency grid freqGrid.
Also, the frequency units of the values in FB and the vector freqGrid must be the same.

X — PSD and frequency grid dataset
cell array of matrices | cell array of tables

PSD and frequency grid dataset, specified as a cell array of matrices or tables, where each cell
contains the PSD data corresponding to one experiment. faultBandMetrics assumes that the last
column of data in each cell contains the frequency grid while the first column contains PSD data. If
the data is not in the same order, then use the 'SpectrumColumn' and 'FrequencyColumn' name-
value pair arguments to specify the column numbers or names of the PSD data and the frequency
grid, respectively.

T — PSD and frequency grid dataset
timetable | table of tables/timetables | fileEnsembleDatastore object

PSD and frequency grid dataset, specified as a timetable, table of tables/timetables or a
fileEnsembleDatastore object where each member variable contains the PSD data corresponding
to one experiment. faultBandMetrics assumes that the last column of data in the member variable
of T contains the frequency grid while the first column contains PSD data. If T is not in the same
order, then use the 'SpectrumColumn' and 'FrequencyColumn' name-value pair arguments to
specify the column numbers or names of the PSD data and the frequency grid, respectively.

1 Functions

1-74

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ...,'SpectrumColumn','Var1'

SpectrumColumn — PSD data column to be used
first column of dataset (default) | integer | string

PSD data column to be used, specified as the comma-separated pair consisting of 'SpectrumColumn'
and an integer or a string. faultBandMetrics uses the first column of data by default. If the PSD
data is not the first column of your cell array X or dataset T, use 'SpectrumColumn' to specify the
column numbers or names of the PSD data column.

When you specify 'DataVariable', you must specify 'SpectrumColumn' as a column of data in it.

When your dataset is in a cell array of matrices, you can use the values 'Var1,'Var2',... to refer to
the spectrum data columns.

FrequencyColumn — Frequency grid data column to be used
last column of dataset (default) | integer | string

Frequency grid data column to be used, specified as the comma-separated pair consisting of
'FrequencyColumn' and an integer or string. faultBandMetrics uses the last column of data by
default. If the frequency grid data is not the last column of your cell array X or dataset T, use
'FrequencyColumn' to specify the column numbers or names of the frequency grid data column.

When your dataset is in a cell array of matrices, you can use the values ’Var1’,’Var2’,... to
refer to the spectrum data columns.

DataVariable — Data variable containing PSD and frequency grid data
'Var1' (default) | string

Data variable containing PSD and frequency grid data, specified as the comma-separated pair
consisting of 'DataVariable' and a string. Use 'DataVariable' to specify the data variable
containing both PSD and frequency grid data when the input dataset is a cell array of tables, a table
of tables, tables/timetables of matrices, or a fileEnsembleDatastore object. 'DataVariable'
must be valid table variable name.

Output Arguments
spectralMetrics — Spectral metrics
table

Spectral metrics, returned as an n-by-m table, where

• n is the number of rows when dataset is a cell array X, or the number of members (rows) when the
data is in a table or an ensemble T

• m = 3*size(FB,1)+1, that is three metrics per frequency range in FB and the total band power
over the frequency range.

faultBandMetrics returns the following spectral metrics for each frequency range in FB:

 faultBandMetrics

1-75

• Peak Amplitude — Peak amplitude value for each frequency range in FB.
• Peak Frequency — Peak frequency value for each frequency range in FB.
• Band Power — Average power of each frequency range in FB. For more information on band

power, see bandpower.
• Total Band Power — Sum of individual band powers for the set of frequency ranges in FB.

info — Data assignment information
structure

Data assignment information, returned as a structure with the following fields:

• DataVariable — Data variable being used from X or T
• FrequencyColumn — Frequency grid data column name
• SpectrumColumn — PSD data column name

See Also
bandpower | bearingFaultBands | faultBands | gearMeshFaultBands | pspectrum

Topics
“Motor Current Signature Analysis for Gear Train Fault Detection”

Introduced in R2019b

1 Functions

1-76

faultBands
Generate fault frequency bands for spectral feature extraction

Syntax
FB = faultBands(F0,N0)
FB = faultBands(F0,N0,F1,N1)
___ = faultBands(___ ,Name,Value)
[FB,info] = faultBands(___)

faultBands(___)

Description
FB = faultBands(F0,N0) generates fault frequency bands FB, using the fundamental frequency of
interest F0 and the array of harmonics N0. For instance, to construct fault bands for an induction
motor, the mains frequency of 60 Hz is the fundamental frequency of interest.

FB = faultBands(F0,N0,F1,N1) constructs fault frequency bands FB, using the distance of the
first sideband F1 from the fundamental frequency F0. N1 is the array of the sidebands around F0. If
F1 is not specified, then faultBands sets F1 to 10 percent of F0 by default. N1 is equivalent to the
'Sidebands' name-value pair. You can use the 'Type' name-value pair to specify separation between
successive sidebands.

___ = faultBands(___ ,Name,Value) allows you to specify additional parameters using one or
more name-value pair arguments.

[FB,info] = faultBands(___) also returns the structure info containing information about the
generated fault frequency bands FB.

faultBands(___) with no output arguments plots a bar chart of the generated fault frequency
bands FB.

Examples

Frequency Bands of Electrical Mains Supply

For this example, generate frequency bands for analyzing the signal components around the first 5
harmonics of the mains supply frequency.

With the fundamental frequency of 60 Hz, the frequency of the alternating current in the mains
power supply, use faultBands to generate the first 5 harmonics of the mains supply.

F0 = 60;
N0 = 1:5;
FB = faultBands(F0,N0)

FB = 5×2

 faultBands

1-77

 58.5000 61.5000
 118.5000 121.5000
 178.5000 181.5000
 238.5000 241.5000
 298.5000 301.5000

FB is returned as a 5x2 array with default frequency band width of 5% of F0 which is 3 Hz. The first
column in FB contains the values of F − W

2 , while the second column contains all the values of F + W
2

for each harmonic.

Frequency Bands of Faulty Induction Motor

For this example, consider an induction motor with broken rotor bars. Under normal operation with
load, the rotor speed always lags the speed of the magnetic field allowing the rotor bars to cut
magnetic lines of force and produce useful torque. This difference is called slip. Considering a slip
value of 0.03 in the system with broken rotors, construct frequency bands for sideband components
around the fundamental frequency of 60 Hz.

F0 = 60;
N0 = 1:2;
slip = 0.03;
F1 = 2*slip*F0;
N1 = 1:3;
[FB,info] = faultBands(F0,N0,F1,N1)

FB = 12×2

 47.7000 50.7000
 51.3000 54.3000
 54.9000 57.9000
 62.1000 65.1000
 65.7000 68.7000
 69.3000 72.3000
 107.7000 110.7000
 111.3000 114.3000
 114.9000 117.9000
 122.1000 125.1000
 ⋮

info = struct with fields:
 Centers: [1x12 double]
 Labels: [1x12 string]
 HarmonicGroups: [1 1 1 1 1 1 2 2 2 2 2 2]

Visualize Frequency Bands and Harmonics of the Electrical Mains Supply

Construct frequency bands for analyzing the signal components around the first three harmonics of
the electrical mains supply frequency.

1 Functions

1-78

With the fundamental frequency of 60 Hz, the alternating current in the mains power supply, use
faultBands to visualize the first 3 harmonics of the mains supply.

F0 = 60;
N0 = 1:3;
faultBands(F0,N0)

From the plot, observe the following:

• The fundamental frequency, which is also the first harmonic, 1F0 at 60 Hz
• The second harmonic, 2F0 at 120 Hz
• The third harmonic, 3F0 at 180 Hz

To better capture the expected variations of the actual system signals around the nominal fault
frequencies, set the widths of each band to 10 Hz.

faultBands(F0,N0,'Width',10)

 faultBands

1-79

Folding Negative Fault Frequencies

For this example, consider an induction motor with static and dynamic rotor eccentricities. Construct
and visualize the frequency bands for the 4 sideband components of an induction motor with 4 pole
pairs around the fundamental frequency due to the rotor eccentricities.

F0 = 60;
N0 = 1;
slip = 0.029;
polePairs = 4;
F1 = 2*F0*(1-slip)/polePairs

F1 = 29.1300

N1 = 0:4;
faultBands(F0,N0,F1,N1)

Warning: Truncated or removed negative fault frequency bands.

1 Functions

1-80

To avoid truncating negative fault frequency bands, set 'Folding' to true to fold them onto the
positive frequency axis.

faultBands(F0,N0,F1,N1,'Folding',true)

 faultBands

1-81

Observe that the sideband frequencies 1F0-3F1 and 1F0-4F1 are now visible on the positive axis.

Input Arguments
F0 — Fundamental frequency of interest
positive scalar

Fundamental frequency of interest, specified as a positive scalar. faultBands constructs the fault
frequency bands around the fundamental frequency F0. For instance, to construct fault bands for a
faulty induction motor, the mains frequency of 60 Hz is the fundamental frequency of interest.
Similarly, to generate fault bands for a faulty gear train, the input shaft frequency is the fundamental
frequency.

You can specify F0 in either hertz or orders.

N0 — Harmonics of the fundamental frequency
1 (default) | vector of positive integers

Harmonics of the fundamental frequency, specified as a vector of positive integers. Specify fault
bands around the fundamental frequency F0 and its harmonics by N0. N0 is equivalent to the
'Harmonics' name-value pair with a default value of 1.

F1 — Distance of the first sideband from the fundamental frequency
0.1*F0 (default) | positive scalar

1 Functions

1-82

Distance of the first sideband from the fundamental frequency, specified as a positive scalar. If F1 is
not specified, then faultBands assumes a value of 10 percent of the fundamental frequency for F1.

N1 — Sidebands of the fundamental frequency and its harmonics
vector of nonnegative integers

Sidebands of the fundamental frequency and its harmonics, specified as a vector of nonnegative
integers. N1 is equivalent to the 'Sidebands' name-value pair with a default value of 0.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ...,'Harmonics',[1,3,5]

Harmonics — Harmonics of the fundamental frequency to be included
1 (default) | vector of positive integers

Harmonics of the fundamental frequency to be included, specified as the comma-separated pair
consisting of 'Harmonics' and a vector of positive integers. The default value is 1. Specify
'Harmonics' when you want to construct the frequency bands with more harmonics of the
fundamental frequency.

Sidebands — Sidebands around the fundamental frequency and its harmonics to be
included
0 (default) | vector of nonnegative integers

Sidebands around the fundamental frequency and its harmonics to be included, specified as the
comma-separated pair consisting of 'Sidebands' and a vector of nonnegative integers. The default
value is 0. Specify 'Sidebands' when you want to construct the frequency bands with sidebands
around the fundamental frequency and its harmonics.

Width — Width of the frequency bands centered at the nominal fault frequencies
5 percent of the fundamental frequency (default) | positive scalar

Width of the frequency bands centered at the nominal fault frequencies, specified as the comma-
separated pair consisting of 'Width' and a positive scalar. The default value is 5 percent of the
fundamental frequency. Avoid specifying 'Width' with a large value so that the fault bands do not
overlap.

Type — Separation value between successive sidebands
'additive' (default) | 'multiplicative'

Separation value between successive sidebands, specified as the comma-separated pair consisting of
'Type' and either 'additive' or 'multiplicative'. Specify 'Type' as:

• 'additive', to set the separation between successive sidebands to F1.
• 'multiplicative', to set the separation between successive sidebands proportional to both the

harmonic order and the sideband value.

Folding — Logical value specifying whether negative nominal fault frequencies have to be
folded about the frequency origin
false (default) | true

 faultBands

1-83

Logical value specifying whether negative nominal fault frequencies have to be folded about the
frequency origin, specified as the comma-separated pair consisting of 'Folding' and either true or
false. If you set 'Folding' to true, then faultBands folds the negative nominal fault frequencies
about the frequency origin by taking their absolute values such that the folded fault bands always fall
in the positive frequency intervals. The folded fault bands are computed as
max 0, F − W

2 , F + W
2 , where W is the 'Width' name-value pair and F is one of the nominal fault

frequencies.

Output Arguments
FB — Fault frequency bands
Nx2 array

Fault frequency bands, returned as an Nx2 array, where N is the number of fault frequencies. FB is
returned in the same units as F0, in either Hertz or orders. The generated fault bands,
F − W

2 , F + W
2 , are centered depending on the sideband specification as follows:

• If you do not specify the sidebands, then the fault bands are centered at F = n0F0, where the
integer n0 ranges through the elements of the array of harmonics, N0.

• If you specify sidebands using N1 or the 'Sidebands' name-value pair, then fault bands are
centered at:

• F = n0F0 ± n1F1, when 'Type' is specified as 'additive'. Here, the integer n1 ranges
through the elements of the array of sidebands, N1.

• F = n0 F0 ± n1F1 , when 'Type' is specified as 'multiplicative'.

info — Information about the fault frequency bands
structure

Information about the fault frequency bands in FB, returned as a structure with the following fields:

• Centers — Center fault frequencies
• Labels — Labels describing each frequency
• HarmonicGroups — Harmonic group numbers equal to the harmonic order of each frequency

band to be able to identify fault bands associated with the nominal fault frequency F = n0F0,
where the integer n0 ranges through the elements of the array of harmonics, N0

See Also
bearingFaultBands | faultBandMetrics | gearMeshFaultBands

Topics
“Motor Current Signature Analysis for Gear Train Fault Detection”

Introduced in R2019b

1 Functions

1-84

findIndex
Find the workspace ensemble member indices for members that match a specified variable name and
value

Syntax
index = findIndex(wensemble,varname,value)

Description
findIndex is a function used in code generated by Diagnostic Feature Designer.

index = findIndex(wensemble,varname,value) finds the indices of members that contain the
value of the variable varname.

For example, when you specify findIndex(outputEnsemble,'File',filename), where
filename identifies the last file read from an ensemble datastore, findIndex finds the index of the
workspace ensemble member that is associated with that file name.

Code that is generated by Diagnostic Feature Designer uses writeMember, readMember, and
findIndex under the following conditions:

• The input data is a file or simulation ensemble datastore.
• The computation option during code generation specified storing results in local memory rather

than writing results back to the ensemble datastore.

Explicitly specifying a member index when reading and writing within the local version of the data,
which the code manages using a workspaceEnsemble object, ensures member synchronization with
the original ensemble datastore. This synchronization is necessary when you have sequential
member-processing loops, such as when you compute ensemble statistics as a precursor to
computing signal residues.

• During the first member-processing loop, which starts with an empty ensemble, no indexing is
needed. The code appends each new member result to the end of the ensemble.

• During the second loop, the index enables the code to write updated member results to the
correct location within the now-populated ensemble.

For more information about the dual processing loop for ensemble statistics, see “Anatomy of App-
Generated MATLAB Code”.

Input Arguments
wensemble — Ensemble object
workspaceEnsemble object

Ensemble object, specified as a workspaceEnsemble object. wensemble contains ensemble data
and specifies variable names and types.

varname — Variable name
string

 findIndex

1-85

Variable name to match, specified as a string.
Example: 'File'

value — Variable value
number | string

Variable value to match, specified as a string.
Example: filename

Output Arguments
index — Member index
positive integer vector | []

Member index for ensemble members that contain a specified variable name and value, returned as a
vector of positive integers with length equal to the number of matching members. If no members
contain the specified name-value combination, findIndex returns []. In code generated by
Diagnostic Feature Designer, index is either a single integer or [], and identifies the member with
the file name that matches the file name in the input argument.

See Also
Diagnostic Feature Designer | fileEnsembleDatastore | readMember |
simulationEnsembleDatastore | workspaceEnsemble | writeMember

Topics
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”

Introduced in R2020a

1 Functions

1-86

fit
Estimate parameters of remaining useful life model using historical data

Syntax
fit(mdl,data)
fit(mdl,data,lifeTimeVariable)
fit(mdl,data,lifeTimeVariable,dataVariables)

fit(mdl,data,lifeTimeVariable,dataVariables,censorVariable)
fit(mdl,data,lifeTimeVariable,dataVariables,censorVariable,encodedVariables)

Description
The fit function estimates the parameters of a remaining useful life (RUL) prediction model using
historical data regarding the health of an ensemble of similar components, such as multiple machines
manufactured to the same specifications. Depending on the type of model, you specify the historical
health data as a collection of lifespan measurements or degradation profiles. Once you estimate the
parameters of your model, you can then predict the remaining useful life of similar components using
the predictRUL function.

Using fit, you can configure the parameters for the following types of estimation models:

• Degradation models
• Survival models
• Similarity models

For a basic example illustrating RUL prediction, see “Update RUL Prediction as Data Arrives”.

For general information on predicting remaining useful life using these models, see “RUL Estimation
Using RUL Estimator Models”.

fit(mdl,data) fits the parameters of the remaining useful life model mdl using the historical data
in data. This syntax applies only when data does not contain table or timetable data.

fit(mdl,data,lifeTimeVariable) fits the parameters of mdl using the time variable
lifeTimeVariable and sets the LifeTimeVariable property of mdl. This syntax applies only
when data contains:

• Nontabular data
• Tabular data, and mdl does not use data variables

fit(mdl,data,lifeTimeVariable,dataVariables) fits the parameters of mdl using the data
variables in dataVariables and sets the DataVariables property of mdl.

fit(mdl,data,lifeTimeVariable,dataVariables,censorVariable) specifies the censor
variable for a survival model and sets the CensorVariable property of mdl. The censor variable
indicates which life-time measurements in data are not end-of-life values. This syntax applies only
when mdl is a survival model and data contains tabular data.

 fit

1-87

fit(mdl,data,lifeTimeVariable,dataVariables,censorVariable,encodedVariables)
specifies the encoded variables for a covariate survival model and sets the EncodedVariables
property of mdl. Encoded variables are usually nonnumeric categorical features that fit converts to
numeric vectors before fitting. This syntax applies only when mdl is a covariateSurvivalModel
object and data contains tabular data.

Examples

Train Linear Degradation Model

Load training data.

load('linTrainVectors.mat')

The training data is a cell array of column vectors. Each column vector is a degradation feature
profile for a component.

Create a linear degradation model with default settings.

mdl = linearDegradationModel;

Train the degradation model using the training data.

fit(mdl,linTrainVectors)

Train Reliability Survival Model

Load training data.

load('reliabilityData.mat')

This data is a column vector of duration objects representing battery discharge times.

Create a reliability survival model with default settings.

mdl = reliabilitySurvivalModel;

Train the survival model using the training data.

fit(mdl,reliabilityData,"hours")

Train Hash Similarity Model Using Tabular Data

Load training data.

load('hashTrainTables.mat')

The training data is a cell array of tables. Each table is a degradation feature profile for a component.
Each profile consists of life time measurements in the "Time" variable and corresponding
degradation feature measurements in the "Condition" variable.

1 Functions

1-88

Create a hash similarity model that uses the following values as hashed features:

mdl = hashSimilarityModel('Method',@(x) [mean(x),std(x),kurtosis(x),median(x)]);

Train the similarity model using the training data. Specify the names of the life time and data
variables.

fit(mdl,hashTrainTables,"Time","Condition")

Predict RUL Using Covariate Survival Model

Load training data.

load('covariateData.mat')

This data contains battery discharge times and related covariate information. The covariate variables
are:

• Temperature
• Load
• Manufacturer

The manufacturer information is a categorical variable that must be encoded.

Create a covariate survival model, and train it using the training data.

mdl = covariateSurvivalModel('LifeTimeVariable',"DischargeTime",'LifeTimeUnit',"hours",...
 'DataVariables',["Temperature","Load","Manufacturer"],'EncodedVariables',"Manufacturer");
fit(mdl,covariateData)

Successful convergence: Norm of gradient less than OPTIONS.TolFun

Suppose you have a battery pack manufactured by maker B that has run for 30 hours. Create a test
data table that contains the usage time, DischargeTime, and the measured ambient temperature,
TestAmbientTemperature, and current drawn, TestBatteryLoad.

TestBatteryLoad = 25;
TestAmbientTemperature = 60;
DischargeTime = hours(30);
TestData = timetable(TestAmbientTemperature,TestBatteryLoad,"B",'RowTimes',hours(30));
TestData.Properties.VariableNames = {'Temperature','Load','Manufacturer'};
TestData.Properties.DimensionNames{1} = 'DischargeTime';

Predict the RUL for the battery.

estRUL = predictRUL(mdl,TestData)

estRUL = duration
 38.337 hr

Plot the survival function for the covariate data of the battery.

plot(mdl,TestData)

 fit

1-89

Input Arguments
mdl — Remaining useful life prediction model
degradation model | survival model | similarity model

Remaining useful life prediction model, specified as one of these models. fit updates the parameters
of this model using the historical data in data.

RUL Model Groups Prediction Model
Degradation models linearDegradationModel

exponentialDegradationModel
Survival models reliabilitySurvivalModel

covariateSurvivalModel
Similarity models hashSimilarityModel

pairwiseSimilarityModel
residualSimilarityModel

For more information on the different model types and when to use them, see “Models for Predicting
Remaining Useful Life”.

data — Historical data
column vector | array | table | timetable | cell array

1 Functions

1-90

Historical data regarding the health of an ensemble of similar components, such as their degradation
profiles or life spans, specified as an array or table of component life times, or a cell array of
degradation profiles.

If your historical data is stored in an ensemble datastore object, you must first convert it to a table
before estimating your model parameters. For more information, see “Data Ensembles for Condition
Monitoring and Predictive Maintenance”.

The format of data depends on the type of RUL model you specify in mdl.

Degradation Model

If mdl is a linearDegradationModel or exponentialDegradationModel, specify data as a cell
array of component degradation profiles. Each element of the cell array contains the degradation
feature profile across the lifetime of a single component. There can be only one degradation feature
for your model. You can specify data as a cell array of:

• Two-column arrays, where each row contains the usage time in the first column and the
corresponding feature measurement in the second column. In this case, the usage time column
must contain numeric values; that is, it cannot use, for example, duration or timedate values.

• table objects. Select the variable from the table that contains the feature degradation profile
using dataVariables, and select the usage time variable, if present, using lifeTimeVariable.

• timetable objects. Select the variable from the table that contains the feature degradation
profile using dataVariables, and select the usage time variable using lifeTimeVariable.

Survival Model

For survival models, data contains the life span measurements for multiple components. Also, for
covariate survival models, data contains corresponding time-independent covariates, such as the
component provider or working regimes. Specify data as one of the following:

• Column vector of life span measurements — This case applies only when mdl is a
reliabilitySurvivalModel.

• Array — The first column contains the life span measurements, and the remaining columns
contain the covariate values. This case applies only when mdl is a covariateSurvivalModel.

• table or timetable — In this case, select the variable from the table that contains the life span
measurements using lifeTimeVariable. For covariate survival models, select the covariate
variables using dataVariables. For reliability survival models, fit ignores dataVariables.

By default, fit assumes that all life span measurements are end-of-life values. To indicate that a life
span measurement is not an end-of-life value, use censoring. To do so, specify data as a table or
timetable that contains a censor variable. The censor variable is a binary variable that is 1 when
the corresponding life span measurement is not an end-of-life value. Select the censor variable using
censorVariable.

Similarity Model

If mdl is a hashSimilarityModel, pairwiseSimilarityModel, or residualSimilarityModel,
specify data as a cell array of degradation profiles. Each element of the cell array contains
degradation feature profiles across the lifetime a single component. For similarity models, you can
specify multiple degradation features, where each feature is a health indicator for the component.
You can specify data as a cell array of:

 fit

1-91

• N-by-(Mi+1) arrays, where N is the number of feature measurements (at different usage times)
and Mi is the number of features. The first column contains the usage times and the remaining
columns contain the corresponding measurements for degradation features.

• table objects. Select the variables from the table that contain the feature degradation profiles
using dataVariables, and select the corresponding usage time variable, if present, using
lifeTimeVariable.

• timetable objects. Select the variables from the table that contain the feature degradation
profiles using dataVariables, and select the corresponding usage time variable using
lifeTimeVariable.

fit assumes that all the degradation profiles represent run-to-failure data; that is, the data starts
when the component is in a healthy state and end when the component is close to failure or
maintenance.

lifeTimeVariable — Life time variable
"" (default) | string

Life time variable, specified as a string. If data is a:

• table, then lifeTimeVariable must match one of the variable names in the table.
• timetable, then lifeTimeVariable one of the variable names in the table or the dimension

name of the time variable , data.Properties.DimensionNames{1}.

table or timetable, then lifeTimeVariable must match one of the variable names in the table.
If there is no life time variable in the table or if data is nontabular, then you can omit
lifeTimeVariable.

lifeTimeVariable must be "" or a valid MATLAB variable name, and must not match any of the
strings in dataVariables.

fit stores lifeTimeVariable in the LifeTimeVariable property of the model.

dataVariables — Feature data variables
"" (default) | string | string array

Feature data variables, specified as a string or string array. If data is a:

• Degradation model, then dataVariables must be a string
• Similarity model or covariate survival model, then dataVariables must be a string array
• Reliability survival model, then fit ignores dataVariables

If data is:

• A table or timetable, then the strings in dataVariables must match variable names in the
table.

• Nontabular, then dataVariables must be "" or contain the same number of strings as there are
data columns in data. The strings in dataVariables must be valid MATLAB variable names.

fit stores dataVariables in the DataVariables property of the model.

censorVariable — Censor variable
"" (default) | string

1 Functions

1-92

Censor variable for survival models, specified as a string. The censor variable is a binary variable that
indicates which life time measurements in data are not end-of-life values. To use censoring, data
must be a table or timetable.

If you specify censorVariable, the string must match one of the variable names in data and must
not match any of the strings in dataVariables or lifeTimeVariable.

fit stores censorVariable in the CensorVariable property of the model.

encodedVariables — Encoded variables
"" (default) | string | string array

Encoded variables for covariate survival models, specified as a string or string array. Encoded
variables are usually nonnumeric categorical features that fit converts to numeric vectors before
fitting. You can also designate logical or numeric values that take values from a small set to be
encoded.

The strings in encodedVariables must be a subset of the strings in dataVariables.

fit stores encodedVariables in the EncodedVariables property of the model.

See Also
Functions
predictRUL | table | timetable

Topics
“Update RUL Prediction as Data Arrives”
“RUL Estimation Using RUL Estimator Models”
“Data Ensembles for Condition Monitoring and Predictive Maintenance”

Introduced in R2018a

 fit

1-93

frameintervals
Create frame intervals based on frame settings

Syntax
intervals = frameintervals(range,framerate,framesize)
intervals = frameintervals(___ ,Name,Value)

Description
frameintervals is a function used in code generated by Diagnostic Feature Designer.

intervals = frameintervals(range,framerate,framesize) creates frame intervals
containing frame start and stop times for all frames within the specified range of data, using the
specified frame rate and frame size.

For instance, suppose that your full signal starts at 0 and ends at 30 seconds. You specify contiguous
one second frames by setting both framerate and framesize to 1. Then range is equal to [0 30]
and intervals is returned as a table of 30 intervals that starts with the interval [0 1] and ends
with the interval [29 30].

Code that is generated by Diagnostic Feature Designer uses frameintervals when performing
frame-based member processing.

intervals = frameintervals(___ ,Name,Value) creates frame intervals using one or more
name-value pair arguments. For instance, frameintervals('FrameUnit','days') returns frame
intervals in the units of days. Specify name-value pair arguments after all other input arguments.

Input Arguments
range — Data range
numeric vector | duration vector

Data range over which to create frame intervals, specified as a numeric or duration vector with two
elements.

framerate — Frame rate
numeric | duration

Frame rate, which represents the distance between the starting points of each successive frame,
specified as a numeric or duration value. By default, frameintervals interprets the units of
framerate and framesize, and sets the units and data type of intervals, according to the data
type and units of range as the table shows.

range framerate,
framesize

Units of
framerate,
framesize

intervals Units of
intervals

numeric numeric same as range numeric same as range

1 Functions

1-94

range framerate,
framesize

Units of
framerate,
framesize

intervals Units of
intervals

duration numeric seconds duration seconds
duration duration same as range duration same as range
duration duration different from

range
duration seconds

framesize — Frame size
numeric | duration

Frame size, which represents the distance between the start point and end point of each successive
frame, specified as a numeric or duration value. By default, frameintervals interprets the units of
framesize and framerate, and sets the units and data type of intervals, according to the data
type and units of range. For more information, see the table in framerate.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: frameintervals('FrameUnit','days')

FrameUnit — Frame units
'seconds' (default) | string

Frame units, specified as the comma-separated pair consisting of 'FrameUnit' and a string
identifying the unit in which to return intervals. When framerate and framesize are numeric
but range is duration, 'FrameUnit' also specifies the units of framerate and framesize.

VariableNames — Variable names
'seconds' (default) | string

Variable names for intervals, specified as the comma-separated pair consisting of
'VariableNames' and a string array with two strings representing the names for start points and
end points.

Output Arguments
intervals — Frame intervals
table

Frame intervals, returned as an nf-by-2 table, where nf is the number of frames. By default, the data
type and units of intervals depend on the data type and units of range and framerate. For more
information, see framerate. The name-value pair argument framesize overrides the default units
for intervals.

See Also
Diagnostic Feature Designer | joindata | readFrameIntervals

 frameintervals

1-95

Topics
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”

Introduced in R2020a

1 Functions

1-96

gearConditionMetrics
Standard metrics for gear condition monitoring

Syntax
gearMetrics = gearConditionMetrics(X)
gearMetrics = gearConditionMetrics(T)
gearMetrics = gearConditionMetrics(___ ,Name,Value)

gearMetrics = gearConditionMetrics(T,sigVar,diffVar,regVar,resVar)
gearMetrics = gearConditionMetrics(___ ,'SortBy',sortByValue)

[gearMetrics,info] = gearConditionMetrics(___)

Description
gearMetrics = gearConditionMetrics(X) returns the gear condition monitoring metrics
gearMetrics using the vibration data in cell array X. gearConditionMetrics assumes that each
cell element in X contains columns of time-synchronous averaged (TSA), difference, regular, and
residual signals, in their respective order. If the signals are not in the same order, then use
Name,Value pair arguments.

gearMetrics = gearConditionMetrics(T) computes the gear condition monitoring metrics
gearMetrics from vibration dataset T. gearConditionMetrics assumes that T contains columns
of TSA, difference, regular, and residual signals, in their respective order. If the signals are not in the
same order, then use Name,Value pair arguments.

gearMetrics = gearConditionMetrics(___ ,Name,Value) allows you to specify additional
parameters using one or more name-value pair arguments.

gearMetrics = gearConditionMetrics(T,sigVar,diffVar,regVar,resVar) computes the
gear condition monitoring metrics gearMetrics from vibration dataset T. Use [] or '' to skip a
signal in the computation. For instance, if the data set T contains only the TSA and regular signal, use
the syntax in the following way.

gearMetrics = gearConditionMetrics(T,sigVar,[],regVar,[])

gearMetrics = gearConditionMetrics(___ ,'SortBy',sortByValue) allows you to specify
the chronological order of the signal histories using sortByValue. NA4 depends on the chronological
order of the vibration data since gearConditionMetrics uses the previous datasets up to the
current index to compute the metric.

[gearMetrics,info] = gearConditionMetrics(___) also returns the structure info
containing information about the table or fileEnsembleDatastore object variables assigned to
various signals.

Examples

 gearConditionMetrics

1-97

Extract Gear Condition Monitoring Metrics from Vibration Signals

Consider a drivetrain with six gears driven by a motor that is fitted with a vibration sensor, as
depicted in the figure below. Gear 1 on the motor shaft meshes with gear 2 with a gear ratio of 17:1.
The final gear ratio, that is, the ratio between gears 1 and 2 and gears 3 and 4, is 51:1. Gear 5, also
on the motor shaft, meshes with gear 6 with a gear ratio of 10:1. The motor is spinning at 180 RPM,
and the sampling rate of the vibration sensor is 50 kHz.

Create the dataset.

rpm = 180;
fs = 50e3;
t = (0:1/fs:(1/3)-1/fs)'; % sample times
orderList = [17 51];
f = rpm/60*[1 orderList 10];

In practice, you would use measured data such as vibration signals obtained from an accelerometer.
For this example, generate TSA signal X, which is the simulated data from the vibration sensor
mounted on the motor, and then compute the difference, regular, and residual signals. Store the
signals in a preallocated table.

T = table('Size',[10 4],'VariableTypes',{'cell','cell','cell','cell'},'VariableNames',{'TSA','Diff','Reg','Res'});
for k = 1:10
 X = sin(2*pi*f(1)*t) + sin(2*pi*2*f(1)*t) + ... % motor shaft rotation and harmonic
 3*sin(2*pi*f(2)*t) + 3*sin(2*pi*2*f(2)*t) + ... % gear mesh vibration and harmonic for gears 1 and 2
 4*sin(2*pi*f(3)*t) + 4*sin(2*pi*2*f(3)*t) + ... % gear mesh vibration and harmonic for gears 3 and 4
 2*(k/6)*sin(2*pi*10*f(1)*t) + randn(size(t))/5; % gear mesh vibration for gears 5 and 6 and noise
 res = tsaresidual(X, fs, rpm, orderList);
 dif = tsadifference(X, fs, rpm, orderList);
 reg = tsaregular(X, fs, rpm, orderList);

 T(k,'TSA') = {X};
 T(k,'Diff') = {dif};
 T(k,'Reg') = {reg};
 T(k,'Res') = {res};
end
T

T=10×4 table
 TSA Diff Reg Res

1 Functions

1-98

 ________________ ________________ ________________ ________________

 {16666x1 double} {16666x1 double} {16666x1 double} {16666x1 double}
 {16666x1 double} {16666x1 double} {16666x1 double} {16666x1 double}
 {16666x1 double} {16666x1 double} {16666x1 double} {16666x1 double}
 {16666x1 double} {16666x1 double} {16666x1 double} {16666x1 double}
 {16666x1 double} {16666x1 double} {16666x1 double} {16666x1 double}
 {16666x1 double} {16666x1 double} {16666x1 double} {16666x1 double}
 {16666x1 double} {16666x1 double} {16666x1 double} {16666x1 double}
 {16666x1 double} {16666x1 double} {16666x1 double} {16666x1 double}
 {16666x1 double} {16666x1 double} {16666x1 double} {16666x1 double}
 {16666x1 double} {16666x1 double} {16666x1 double} {16666x1 double}

T is a 10x4 table, where each element is a cell array.

Compute the gear condition monitoring metrics using the dataset in table T.

[gearMetrics1,info1] = gearConditionMetrics(T,'SignalVariable','TSA','DifferenceVariable','Diff','RegularVariable','Reg','ResidualVariable','Res')

gearMetrics1=10×9 table
 RMS Kurtosis CrestFactor FM4 M6A M8A FM0 EnergyRatio NA4
 ______ ________ ___________ ______ ______ ______ ______ ___________ ______

 5.1119 2.074 2.4377 2.4633 9.0009 42.31 1.5499 0.060057 2.4637
 5.1272 2.087 2.4819 1.9331 4.9869 15.634 1.5785 0.10044 4.1973
 5.1526 2.102 2.4744 1.7084 3.6211 8.8635 1.5881 0.14423 5.5871
 5.1877 2.1264 2.5443 1.63 3.1749 6.9296 1.6424 0.18889 6.7318
 5.2385 2.1566 2.5985 1.5861 2.9421 6.0165 1.6937 0.23407 7.6258
 5.2953 2.1879 2.605 1.5604 2.8046 5.4734 1.7211 0.28052 8.3807
 5.365 2.2277 2.6551 1.5423 2.7169 5.1619 1.7761 0.32511 8.8352
 5.4425 2.2574 2.6428 1.5356 2.6796 5.016 1.7945 0.37196 9.3879
 5.5269 2.2891 2.7112 1.5269 2.6344 4.8502 1.8614 0.41819 9.7477
 5.6219 2.3214 2.6979 1.5202 2.6015 4.7342 1.8892 0.46377 10.022

info1 = struct with fields:
 DifferenceVariable: 'Diff'
 RegularVariable: 'Reg'
 ResidualVariable: 'Res'
 SignalVariable: 'TSA'
 SortBy: ''

Observe that the gear metrics are changing due to fault in gear mesh between gears 5 and 6. The
NA4 value is highly sensitive to the fault and its propagation as it significantly increases in value over
the different data sets.

info1 contains information about variables that were used to compute the metrics.

Alternatively, you can also compute the metrics using following syntax.

[gearMetrics2,info2] = gearConditionMetrics(T,'TSA','Diff','Reg','Res')

gearMetrics2=10×9 table
 RMS Kurtosis CrestFactor FM4 M6A M8A FM0 EnergyRatio NA4
 ______ ________ ___________ ______ ______ ______ ______ ___________ ______

 gearConditionMetrics

1-99

 5.1119 2.074 2.4377 2.4633 9.0009 42.31 1.5499 0.060057 2.4637
 5.1272 2.087 2.4819 1.9331 4.9869 15.634 1.5785 0.10044 4.1973
 5.1526 2.102 2.4744 1.7084 3.6211 8.8635 1.5881 0.14423 5.5871
 5.1877 2.1264 2.5443 1.63 3.1749 6.9296 1.6424 0.18889 6.7318
 5.2385 2.1566 2.5985 1.5861 2.9421 6.0165 1.6937 0.23407 7.6258
 5.2953 2.1879 2.605 1.5604 2.8046 5.4734 1.7211 0.28052 8.3807
 5.365 2.2277 2.6551 1.5423 2.7169 5.1619 1.7761 0.32511 8.8352
 5.4425 2.2574 2.6428 1.5356 2.6796 5.016 1.7945 0.37196 9.3879
 5.5269 2.2891 2.7112 1.5269 2.6344 4.8502 1.8614 0.41819 9.7477
 5.6219 2.3214 2.6979 1.5202 2.6015 4.7342 1.8892 0.46377 10.022

info2 = struct with fields:
 DifferenceVariable: 'Diff'
 RegularVariable: 'Reg'
 ResidualVariable: 'Res'
 SignalVariable: 'TSA'
 SortBy: ''

Compute Gear Condition Metrics from Ensemble Datastore

Consider gearData.zip, a collection of 9 data sets where each file contains separate timetables for
the TSA, difference, regular and residual signals.

Extract the compressed files, read the data in the timetables, and create a
fileEnsembleDatastore object using the timetable data. For more information on creating a file
ensemble datastore, see fileEnsembleDatastore.

unzip gearData.zip;
ens = fileEnsembleDatastore(pwd,'.mat');
% Make sure that the function for reading data is on path
addpath(fullfile(matlabroot,'examples','predmaint','main'))
ens.ReadFcn = @readData;
ens.DataVariables = {'TSA','Diff','Reg','Res'};
ens.SelectedVariables = ens.DataVariables;

Compute the gear condition metrics using the data in the ensemble datastore.

[gearMetrics,info] = gearConditionMetrics(ens,'SignalVariable','TSA','DifferenceVariable','Diff','RegularVariable','Reg','ResidualVariable','Res')

gearMetrics=9×9 table
 RMS Kurtosis CrestFactor FM4 M6A M8A FM0 EnergyRatio NA4
 ______ ________ ___________ ______ ______ ______ ______ ___________ ______

 5.1119 2.0734 2.3417 2.4977 9.3854 45.859 1.4919 0.060189 2.4981
 5.1271 2.086 2.3714 1.9236 4.9222 15.262 1.5155 0.10018 4.1509
 5.1526 2.101 2.3938 1.7199 3.6873 9.1708 1.5398 0.14418 5.6187
 5.1882 2.1247 2.4128 1.6283 3.1667 6.9051 1.5589 0.18951 6.7806
 5.238 2.1572 2.45 1.5816 2.9135 5.8919 1.5994 0.23373 7.5444
 5.2947 2.1888 2.4253 1.5571 2.7877 5.4113 1.5956 0.28007 8.3138
 5.3657 2.226 2.4526 1.5443 2.7251 5.1856 1.6297 0.32562 8.8783
 5.4421 2.2564 2.447 1.5341 2.6718 4.9888 1.6549 0.37177 9.3428
 5.5254 2.2867 2.4349 1.5269 2.6354 4.8572 1.6763 0.41747 9.6986

1 Functions

1-100

info = struct with fields:
 DifferenceVariable: 'Diff'
 RegularVariable: 'Reg'
 ResidualVariable: 'Res'
 SignalVariable: 'TSA'
 SortBy: ''

The output table contains 9 rows of metrics where each row corresponds to one data set.

rmpath(fullfile(matlabroot,'examples','predmaint','main')) % Reset path

Input Arguments
X — Vibration dataset
cell array of matrices | cell array of timetables

Vibration dataset, specified as a cell array of matrices or timetables, where each cell contains the
signals corresponding to one time in the historical record. Each cell element in X contains columns of
vibration data representing a combination of TSA, difference, regular, and residual signals.

T — Vibration dataset
timetable | table of vectors | table of tables/timetables | fileEnsembleDatastore object

Vibration dataset, specified as a timetable, table of vectors, table of tables/timetables or a
fileEnsembleDatastore object. Each member (row) of T contains the signals corresponding to
one time in the historical record. When T is a table, each table element contains a signal vector or a
table/timetable with a single numeric column variable. The table variables represent TSA, difference,
regular, and residual signals.

When T is a single timetable, gearConditionMetrics interprets it as a single cell of the same
timetable. For instance, consider a single timetable TT. The command gearConditionMetrics(TT)
is interpreted as gearConditionMetrics({T}).

sigVar — TSA signal variable
string | character array

TSA signal variable, specified as a string or character array. sigVar is equivalent to the
'SignalVariable' name-value pair.

diffVar — Difference signal variable
string | character array

Difference signal variable, specified as a string or character array. diffVar is equivalent to the
'DifferenceVariable' name-value pair.

regVar — Regular signal variable
string | character array

Regular signal variable, specified as a string or character array. regVar is equivalent to the
'RegularVariable' name-value pair.

resVar — Residual signal variable
string | character array

 gearConditionMetrics

1-101

Residual signal variable, specified as a string or character array. resVar is equivalent to the
'ResidualVariable' name-value pair.

sortByValue — Value of 'SortBy'
string

Value of 'SortBy', specified as a string. For more information, see 'SortBy'.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: …,'SortBy','FaultCode'

SignalVariable — TSA signal variable
first column of data (default) | string | character array

TSA signal variable, specified as the comma-separated pair consisting of 'SignalVariable' and a
string or character array.

'SignalVariable' must be a valid table variable name when the dataset is specified as a table or
timetable. When the data is specified as a cell array of matrices, the values ’Var1’,’Var2’,... can
be used to refer to the data columns. If 'SignalVariable' is not specified,
gearConditionMetrics assumes that the first data column contains the TSA signal.

The RMS, Kurtosis, Crest Factor, and FM0 metrics require the TSA signal for computation. If the
TSA signal is not available, gearConditionMetrics returns NaN for these metrics.

DifferenceVariable — Difference signal variable
second column of data (default) | string | character array

Difference signal variable, specified as the comma-separated pair consisting of
'DifferenceVariable' and a string or character array.

'DifferenceVariable' must be a valid table variable name when the dataset is specified as a table
or timetable. When the data is specified as a cell array of matrices, the values ’Var1’,’Var2’,...
can be used to refer to the data columns. If 'DifferenceVariable' is not specified,
gearConditionMetrics assumes that the second data column contains the difference signal.

The FM4, M6A, M8A and Energy Ratio metrics require the difference signal for computation. If the
difference signal is not available, gearConditionMetrics returns NaN for these metrics.

For more information on difference signals, see tsadifference.

RegularVariable — Regular signal variable
third column of data (default) | string | character array

Regular signal variable, specified as the comma-separated pair consisting of 'RegularVariable' and
a string or character array.

'RegularVariable' must be a valid table variable name when the dataset is specified as a table or
timetable. When the data is specified as a cell array of matrices, the values ’Var1’,’Var2’,... can
be used to refer to the data columns. If 'RegularVariable' is not specified,
gearConditionMetrics assumes that the third data column contains the regular signal.

1 Functions

1-102

The FM0 and Energy Ratio metrics require the regular signal for computation. If the regular signal
is not available, gearConditionMetrics returns NaN for these metrics.

For more information on regular signals, see tsaregular.

ResidualVariable — Residual signal variable
fourth column of data (default) | string | character array

Residual signal variable, specified as the comma-separated pair consisting of 'ResidualVariable'
and a string or character array.

'ResidualVariable' must be a valid table variable name when the dataset is specified as a table or
timetable. When the data is specified as a cell array of matrices, the values ’Var1’,’Var2’,... can
be used to refer to the data columns. If 'ResidualVariable' is not specified,
gearConditionMetrics assumes that the fourth data column contains the residual signal.

The NA4 metric requires the residual signal for computation. If the residual signal is not available,
gearConditionMetrics returns NaN for NA4.

For more information on residual signals, see tsaresidual.

SortBy — Signal ordering variable
' ' (default) | string

Signal ordering variable, specified as the comma-separated pair consisting of 'SortBy' and a string.
Use 'SortBy' to order the signal histories in ascending order only when the input dataset T is a table
of vectors or table of tables/timetables. gearConditionMetrics sorts the rows in ascending order
with respect to 'SortBy' before computing gearMetrics. The value in the specified table column
must be a valid input to 'SortBy. For more information, see sort.

If 'SortBy' is not specified or if the dataset is a cell array or fileEnsembleDatastore, then the
signal histories are assumed to be in ascending order, that is, older data at the top.

Output Arguments
gearMetrics — Gear condition monitoring metrics
table

Gear condition monitoring metrics, returned as a table, where each row corresponds to its respective
member in X or T. gearConditionMetrics returns the following condition monitoring metrics:

Computed from TSA Signal

• Root-Mean Square (RMS) — Indicates the general condition of the gearbox in later stages of
degradation. RMS is sensitive to gearbox load and speed changes.

• Kurtosis — Fourth order normalized moment of the signal that indicates major peaks in the
amplitude distribution. A signal consisting exclusively of Gaussian distributed noise has an
approximate kurtosis value of 3. Kurtosis values are higher for damaged gear trains due to
sharp peaks in the amplitude distribution of the signal.

• Crest Factor (CF) — Ratio of signal peak value to RMS value that indicates early signs of
damage, especially where vibration signals exhibit impulsive traits.

 gearConditionMetrics

1-103

Computed from Difference Signal

• FM4 — Describes how peaked or flat the difference signal amplitude is. FM4 is normalized by the
square of the variance, and detects faults isolated to only a finite number of teeth in a gear mesh.

• M6A — Describes how peaked or flat the difference signal amplitude is. M6A is normalized by the
cube of the variance, and indicates surface damage on the rotating machine components.

• M8A — An improved version of the M6A indicator. M8A is normalized by the fourth power of the
variance.

Computed from a Mix of Signals

• FM0 — Compares ratio of peak value of TSA signal to energy of regular signal. FM0 identifies major
anomalies, such as tooth breakage or heavy wear, in the meshing pattern of a gear.

• Energy Ratio (ER) — Ratio between energy of the difference signal and the energy of the
regular meshing component. Energy Ratio indicates heavy wear, where multiple teeth on the
gear are damaged.

Computed from a Set of Residual Signals

• NA4 — An improved version of the FM4 indicator. NA4 indicates the onset of damage and continues
to react to the damage as it spreads and increases in magnitude.

gearConditionMetrics returns NaN for metrics when their respective signals are not available for
computation. For more information about these metrics, see “Algorithms” on page 1-104.

info — Signal assignment information
structure

Signal assignment information, returned as a structure with the following fields:

• DifferenceVariable — Difference variable name
• RegularVariable — Regular variable name
• ResidualVariable — Residual variable name
• SignalVariable — TSA signal variable name
• SortBy — Signal ordering variable name

Algorithms
Root Mean Square (RMS)

The root mean square (RMS) of the TSA signal is computed using the rms command. For a TSA signal
x, RMS is computed as,

RMS x = 1
N ∑i = 1

N
xi

2 .

Here, N is the number of data samples.

RMS is usually a good indicator of the overall condition of gearboxes, but not a good indicator of
incipient tooth failure. It is also useful to detect unbalanced rotating elements. RMS of a standard
normal distribution is 1.

1 Functions

1-104

For more information, see rms.

Kurtosis

Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of a standard normal
distribution is 3. Distributions that are more outlier-prone have kurtosis values greater than 3;
distributions that are less outlier-prone have kurtosis values less than 3.

gearConditionMetrics computes the kurtosis value of the TSA signal using the kurtosis
command. The kurtosis of a sequence is defined as,

Kurtosis x =

1
N ∑i = 1

N
xi− x 4

1
N ∑i = 1

N
xi− x 2

 2 .

Here, x is the mean of the TSA signal x.

For more information, see kurtosis.

Crest Factor (CF)

Crest Factor is the ratio of the positive peak value of the input signal x to the RMS value.
gearConditionMetrics computes the crest factor of the TSA signal using the peak2rms command.

The crest factor of a sequence is defined as,

CF x = P x
RMS x .

Here, P(x) is the peak value of the TSA signal.

The crest factor indicates the relative size of peaks to the effective value of the signal. It is a good
indicator of gear damage in its early stages, where vibration signals exhibit impulsive traits.

FM4

The FM4 indicator is used to detect faults isolated to only a limited number of teeth in a gear mesh.
FM4 is defined as the normalized kurtosis of the difference signal [4]. FM4 of a standard normal
distribution is 3.

FM4 is computed as,

FM4 d =

1
N ∑i = 1

N
di− d 4

1
N ∑i = 1

N
di− d 2

 2

where, d is the mean of the difference signal d.

M6A

The M6A indicator is used to detect surface damage on machinery components. M6A employs the same
theory as the FM4 metric, but uses the sixth moment of the difference signal normalized by the cube

 gearConditionMetrics

1-105

of the variance. M6A of a standard normal distribution is 15. Hence, M6A is expected to be more
sensitive to peaks in the difference signal. gearConditionMetrics uses the moment command to
compute M6A.

M6A is computed as,

M6A d =

1
N ∑i = 1

N
di− d 6

1
N ∑i = 1

N
di− d 2

 3

where, d is the mean of the difference signal d.

M8A

The M8A indicator is an improved version of M6A. It is expected to be more sensitive to peaks in the
difference signal since M6A is normalized by the fourth power of the variance. M8A of a standard
normal distribution is 105. It is computed as,

M8A d =

1
N ∑i = 1

N
di− d 8

1
N ∑i = 1

N
di− d 2

 4 .

FM0

FM0 is useful in detecting major anomalies in the gear meshing pattern. It does so by comparing the
maximum peak-to-peak amplitude of the TSA signal to the sum of the amplitudes of the meshing
frequencies and their harmonics. gearConditionMetrics uses a combination of peak2peak and
fft commands to compute the FM0 metric.

FM0 is computed as,

FM0 x = PP x

∑
i = 1

N
A i

where, PP(x) is the peak-to-peak values of the TSA signal. A contains the frequency-domain
amplitudes at the mesh frequencies and their harmonics, which represents the energy of the regular
signal.

A is computed as,

A = f f t R t
N

where, R(t) is the regular signal.

Energy Ratio (ER)

Energy Ratio is defined as the ratio of the standard deviations of the difference and regular signals
[1]. It is useful as an indicator of heavy uniform wear, where multiple teeth on the gear are damaged.

1 Functions

1-106

Energy Ratio is computed as,

ER x = σ d
σ R

where, d and R represent the difference and regular signals, respectively.

NA4

NA4 is an improved version of the FM4 indicator [3]. NA4 indicates the onset of damage and continues
to react to the damage as it spreads and increases in magnitude.

NA4 is computed as,

NA4 r, k =
1
N∑i = 1

N rik− rk
4

1
k∑ j = 1

k 1
N∑i = 1

N ri j− r j
2 2

where the normalization is across all vibration data sets up to the current time k using the running
average of variances of residual signals.

References
[1] Keller, Jonathan A., and P. Grabill. "Vibration monitoring of UH-60A main transmission planetary

carrier fault." Annual Forum Proceedings-American Helicopter Society. Vol. 59. No. 2.
American Helicopter Society, Inc, 2003.

[2] Večeř, P., Marcel Kreidl, and R. Šmíd. "Condition indicators for gearbox condition monitoring
systems." Acta Polytechnica pages 35-43, 45.6 (2005).

[3] Zakrajsek, James J., Dennis P. Townsend, and Harry J. Decker. "An analysis of gear fault detection
methods as applied to pitting fatigue failure data." Technical Memorandum 105950. No.
NASA-E-7470. NASA, 1993.

[4] Zakrajsek, James J. "An investigation of gear mesh failure prediction techniques." MS Thesis-
Cleveland State University, 1989.

See Also
tsa | tsadifference | tsaregular | tsaresidual

Topics
“Condition Indicators for Gear Condition Monitoring”

Introduced in R2019a

 gearConditionMetrics

1-107

gearMeshFaultBands
Construct frequency bands around the characteristic fault frequencies of meshing gears for spectral
feature extraction

Syntax
FB = gearMeshFaultBands(FR,Ni,No)
FB = gearMeshFaultBands(___ ,Name,Value)
[FB,info] = gearMeshFaultBands(___)

gearMeshFaultBands(___)

Description
FB = gearMeshFaultBands(FR,Ni,No) generates characteristic fault frequency bands FB of gear
mesh using the rotational speed of the input gear FR and the number of teeth on the input Ni and
output gear No respectively. The values in FB have the same implicit units as FR

FB = gearMeshFaultBands(___ ,Name,Value) allows you to specify additional parameters using
one or more name-value pair arguments.

[FB,info] = gearMeshFaultBands(___) also returns the structure info containing
information about the generated fault frequency bands FB.

gearMeshFaultBands(___) with no output arguments plots a bar chart of the generated fault
frequency bands FB.

Examples

Frequency Bands of Pinion and Gear Mesh

For this example, consider a simple gear set with an 8-toothed pinion on the input shaft meshing with
a 42-toothed spur gear on the output shaft. Assume that the input shaft is spinning at 20 rpm.
Construct the gear mesh frequency bands using the physical characteristics of the gear set.

Ni = 8;
No = 42;
FR = 20;
[FB,info] = gearMeshFaultBands(FR,Ni,No)

FB = 5×2

 19.0000 21.0000
 2.8095 4.8095
 79.0000 81.0000
 159.0000 161.0000
 159.0000 161.0000

info = struct with fields:
 Centers: [20 3.8095 80 160 160]

1 Functions

1-108

 Labels: ["1Fi" "1Fo" "1Fa" "1Fm" "1Fm"]
 FaultGroups: [1 2 3 4 5]

FB is a 5x2 array which includes the primary frequencies 1Fi, 1Fo, 1Fa and 1Fm respectively. The
structure info contains the center frequencies and labels of each frequency range in FB.

Frequency Bands and Spectral Metrics of Gear Train

For this example, consider a simple gear set with an 8-toothed pinion on the input shaft meshing with
a 42-toothed spur gear on the output shaft. Assume that the input shaft is driven at 20 Hz. The
dataset motorSignal.mat contains vibration data for the gear mesh sampled at 1500 Hz.

First, construct the gear mesh frequency bands using the physical characteristics of the gear set.
Construct the frequency bands with the first 3 sidebands and specify the 'Domain' as 'order'.

Ni = 8;
No = 42;
FR = 20;
FB = gearMeshFaultBands(FR,Ni,No,'Sidebands',1:3,'Domain','order')

FB = 15×2

 0.9500 1.0500
 0.1405 0.2405
 3.9500 4.0500
 4.9500 5.0500
 5.9500 6.0500
 6.9500 7.0500
 8.9500 9.0500
 9.9500 10.0500
 10.9500 11.0500
 7.3786 7.4786
 ⋮

FB is a 15x2 array which includes the primary frequencies and their sidebands.

Load the vibration data and compute PSD and frequency grid using pspectrum. Use a frequency
resolution of 0.5.

load('motorSignal.mat','C');
fs = 1500;
[psd,freqGrid] = pspectrum(C,fs,'FrequencyResolution',0.5);

Now, use the frequency bands and PSD data to compute the spectral metrics.

spectralMetrics = faultBandMetrics(psd,freqGrid,FB)

spectralMetrics=1×46 table
 PeakAmplitude1 PeakFrequency1 BandPower1 PeakAmplitude2 PeakFrequency2 BandPower2 PeakAmplitude3 PeakFrequency3 BandPower3 PeakAmplitude4 PeakFrequency4 BandPower4 PeakAmplitude5 PeakFrequency5 BandPower5 PeakAmplitude6 PeakFrequency6 BandPower6 PeakAmplitude7 PeakFrequency7 BandPower7 PeakAmplitude8 PeakFrequency8 BandPower8 PeakAmplitude9 PeakFrequency9 BandPower9 PeakAmplitude10 PeakFrequency10 BandPower10 PeakAmplitude11 PeakFrequency11 BandPower11 PeakAmplitude12 PeakFrequency12 BandPower12 PeakAmplitude13 PeakFrequency13 BandPower13 PeakAmplitude14 PeakFrequency14 BandPower14 PeakAmplitude15 PeakFrequency15 BandPower15 TotalBandPower
 ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ ______________ ______________ __________ _______________ _______________ ___________ _______________ _______________ ___________ _______________ _______________ ___________ _______________ _______________ ___________ _______________ _______________ ___________ _______________ _______________ ___________ ______________

 0.82564 1 0.1542 0.057165 0.1875 0.011175 0.29169 4 0.055249 0.011486 5 0.0021583 0.070117 6 0.013877 1.0514 7 0.21675 0.0077621 9 0.001577 0.004752 10 0.0010282 0.012155 11 0.0025085 7.7318 7.4375 1.4057 4.2222 7.625 0.79678 0.92456 7.8125 0.1924 0.030489 8.1875 0.0060835 0.069138 8.375 0.012642 0.068649 8.5625 0.012578 2.8848

 gearMeshFaultBands

1-109

spectralMetrics is a 1x46 table with peak amplitude, peak frequency and band power calculated
for each frequency range in FB. The last column in spectralMetrics is the total band power,
computed across all 15 frequencies in FB.

Visualize Frequency Bands for Pinion and Gear Set

For this example, consider a simple pinion and gear set with an input shaft speed of 1800 rpm.
Considering that the pinion on the input shaft has 6 teeth and the gear on the output shaft has 8
teeth, visualize the frequency bands for the gear mesh.

FR = 1800;
Ni = 6;
No = 8;
gearMeshFaultBands(FR,Ni,No)

From the plot, observe the following:

• Output shaft defect frequency, 1Fo at 1350 Hz
• Input shaft defect frequency, 1Fi at 1800 Hz
• Assembly phase defect frequency, 1Fa at 5400 Hz
• Gear mesh defect frequency, 1Fm at 10800 Hz

1 Functions

1-110

Input Arguments
FR — Rotational speed of the input gear
positive scalar

Rotational speed of the input gear, specified as a positive scalar. FR is the fundamental frequency
around which gearMeshFaultBands generates the fault frequency bands. Specify FR either in Hertz
or revolutions per minute.

Ni — Number of teeth on the input gear
positive integer

Number of teeth on the input gear, specified as a positive integer.

No — Number of teeth on the output gear
positive integer

Number of teeth on the output gear, specified as a positive integer.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ...,'Harmonics',[1,3,5]

Harmonics — Harmonics of the fundamental frequency to be included
1 (default) | vector of positive integers

Harmonics of the fundamental frequency to be included, specified as the comma-separated pair
consisting of 'Harmonics' and a vector of positive integers. The default value is 1. Specify
'Harmonics' when you want to construct the frequency bands with more harmonics of the
fundamental frequency.

Sidebands — Sidebands around the fundamental frequency and its harmonics to be
included
0 (default) | vector of nonnegative integers

Sidebands around the fundamental frequency and its harmonics to be included, specified as the
comma-separated pair consisting of 'Sidebands' and a vector of nonnegative integers. The default
value is 0. Specify 'Sidebands' when you want to construct the frequency bands with sidebands
around the fundamental frequency and its harmonics.

Width — Width of the frequency bands centered at the nominal fault frequencies
10 percent of the fundamental frequency (default) | positive scalar

Width of the frequency bands centered at the nominal fault frequencies, specified as the comma-
separated pair consisting of 'Width' and a positive scalar. The default value is 10 percent of the
fundamental frequency. Avoid specifying 'Width' with a large value so that the fault bands do not
overlap.

Domain — Units of the fault band frequencies
'frequency' (default) | 'order'

 gearMeshFaultBands

1-111

Units of the fault band frequencies, specified as the comma-separated pair consisting of 'Domain' and
either 'frequency' or 'order'. Select:

• 'frequency' if you want FB to be returned in the same units as FR.
• 'order' if you want FB to be returned as number of rotations relative to FR.

Output Arguments
FB — Fault frequency bands
Nx2 array

Fault frequency bands, returned as an Nx2 array, where N is the number of fault frequencies. FB is
returned in the same units as FR, in either Hertz or orders. Use the generated fault frequency bands
to extract spectral metrics using faultBandMetrics. The generated fault bands, F − W

2 , F + W
2 ,

are centered at the characteristic defect frequencies and their harmonics and sidebands for:

• Input shaft defect frequency, Fi
• Output shaft defect frequency, Fo
• Gear mesh defect frequency, Fm
• Assembly phase pass defect frequency, Fa

When you specify the sidebands, gearMeshFaultBands computes the sidebands with respect to the
input and output shaft defect frequencies:

• Fault frequency bands for input gear defects with its harmonics and the first sideband at Fi
• Fault frequency bands for output gear defects with its harmonics and the first sideband at Fo

gearMeshFaultBands truncates negative fault frequency bands automatically and generates a
warning message.

The value W is the width of the frequency bands, which you can specify using the 'Width' name-value
pair.

info — Information about the fault frequency bands
structure

Information about the fault frequency bands in FB, returned as a structure with the following fields:

• Centers — Center fault frequencies
• Labels — Labels describing each frequency
• FaultGroups — Fault group numbers equal to the number of frequencies

Algorithms
gearMeshFaultBands computes the different characteristic fault frequencies as follows:

• Input shaft defect frequency, Fi = FR
• Output shaft defect frequency, Fo = Ni

NoFR

1 Functions

1-112

• Gear mesh defect frequency, Fm = NiFR = NoFo

•
Assembly phase pass defect frequency,Fa =

Fm
gcd Ni, No

References
[1] Lang, George Fox. “S&V geometry 101.” Sound and Vibration 33 (1999): 16-26.

See Also
bearingFaultBands | faultBandMetrics | faultBands | gearConditionMetrics

Topics
“Motor Current Signature Analysis for Gear Train Fault Detection”

Introduced in R2019b

 gearMeshFaultBands

1-113

generateSimulationEnsemble
Generate ensemble data by running a Simulink model

Syntax
[status,E] = generateSimulationEnsemble(simin)
[status,E] = generateSimulationEnsemble(simin,location)
[status,E] = generateSimulationEnsemble(simin,location,Name,Value)

Description
[status,E] = generateSimulationEnsemble(simin) generates data for a simulation
ensemble by running the Simulink® model specified by simin. This input argument is a vector of
Simulink.SimulationInput objects that also specifies other parameters to change from
simulation to simulation to generate the ensemble. The function writes the simulation data log files to
the current folder. Each file contains the corresponding Simulink.SimulationInput object and all
the variables that the model is configured to log for the simulation. The output arguments indicate
whether any simulations generate errors and return any such errors. Use
simulationEnsembleDatastore to create an ensemble datastore for interacting with the
simulated data.

For general information about data ensembles, see “Data Ensembles for Condition Monitoring and
Predictive Maintenance”.

[status,E] = generateSimulationEnsemble(simin,location) also specifies a path to a
location at which to store the simulation results.

[status,E] = generateSimulationEnsemble(simin,location,Name,Value) uses
additional options specified by one or more Name,Value pair arguments.

Examples

Generate Ensemble of Fault Data

Generate a simulation ensemble datastore of data representing a machine operating under fault
conditions by simulating a Simulink® model of the machine while varying a fault parameter.

Load the Simulink model. This model is a simplified version of the gear-box model described in
“Using Simulink to Generate Fault Data”. For this example, only one fault mode is modeled, a gear-
tooth fault.

mdl = 'TransmissionCasingSimplified';
open_system(mdl)

The gear-tooth fault is modeled as a disturbance in the Gear Tooth fault subsystem. The
magnitude of the disturbance is controlled by the model variable ToothFaultGain, where
ToothFaultGain = 0 corresponds to no gear-tooth fault (healthy operation). To generate the
ensemble of fault data, you use generateSimulationEnsemble to simulate the model at different
values of ToothFaultGain, ranging from -2 to zero. This function uses an array of

1 Functions

1-114

Simulink.SimulationInput objects to configure the Simulink model for each member in the
ensemble. Each simulation generates a separate member of the ensemble in its own data file. Create
such an array, and use setVariable to assign a tooth-fault gain value for each run.

toothFaultValues = -2:0.5:0; % 5 ToothFaultGain values

for ct = numel(toothFaultValues):-1:1
 simin(ct) = Simulink.SimulationInput(mdl);
 simin(ct) = setVariable(simin(ct),'ToothFaultGain',toothFaultValues(ct));
end

For this example, the model is already configured to log certain signal values, Vibration and Tacho
(see “Export Signal Data Using Signal Logging” (Simulink)). generateSimulationEnsemble
further configures the model to:

• Save logged data to files in the folder you specify.
• Use the timetable format for signal logging.
• Store each Simulink.SimulationInput object in the saved file with the corresponding logged

data.

Specify a location for the generated data. For this example, save the data to a folder called Data
within your current folder. The indicator status is 1 (true) if all the simulations complete without
error.

mkdir Data
location = fullfile(pwd,'Data');
[status,E] = generateSimulationEnsemble(simin,location);

[23-Feb-2021 19:09:42] Running simulations...
[23-Feb-2021 19:10:00] Completed 1 of 5 simulation runs
[23-Feb-2021 19:10:14] Completed 2 of 5 simulation runs
[23-Feb-2021 19:10:26] Completed 3 of 5 simulation runs
[23-Feb-2021 19:10:39] Completed 4 of 5 simulation runs
[23-Feb-2021 19:10:50] Completed 5 of 5 simulation runs

Inside the Data folder, examine one of the files. Each file is a MAT-file containing the following
MATLAB® variables:

• SimulationInput — The Simulink.SimulationInput object that was used to configure the
model for generating the data in the file. You can use this to extract information about the
conditions (such as faulty or healthy) under which this simulation was run.

• logsout — A Dataset object containing all the data that the Simulink model is configured to log.
• PMSignalLogName — The name of the variable that contains the logged data ('logsout' in this

example). The simulationEnsembleDatastore command uses this name to parse the data in
the file.

• SimulationMetadata — Other information about the simulation that generated the data logged
in the file.

Now you can create the simulation ensemble datastore using the generated data. The resulting
simulationEnsembleDatastore object points to the generated data. The object lists the data
variables in the ensemble, and by default all the variables are selected for reading. Examine the
DataVariables and SelectedVariables properties of the ensemble to confirm these
designations.

ensemble = simulationEnsembleDatastore(location)

 generateSimulationEnsemble

1-115

ensemble =
 simulationEnsembleDatastore with properties:

 DataVariables: [4x1 string]
 IndependentVariables: [0x0 string]
 ConditionVariables: [0x0 string]
 SelectedVariables: [4x1 string]
 ReadSize: 1
 NumMembers: 5
 LastMemberRead: [0x0 string]
 Files: [5x1 string]

ensemble.DataVariables

ans = 4x1 string
 "SimulationInput"
 "SimulationMetadata"
 "Tacho"
 "Vibration"

ensemble.SelectedVariables

ans = 4x1 string
 "SimulationInput"
 "SimulationMetadata"
 "Tacho"
 "Vibration"

You can now use ensemble to read and analyze the generated data in the ensemble datastore. See
simulationEnsembleDatastore for more information.

Input Arguments
simin — Simulation configurations
vector of Simulink.SimulationInput objects

Simulation configurations, specified as a vector of Simulink.SimulationInput objects. The
simulation configurations specify parameters for each generated member of the ensemble, such as:

• Simulink model to run
• Values of model variables
• Block parameters
• Model initial state

Thus, for example, you can create a vector of Simulink.SimulationInput objects in which all
simulation configurations are identical except for the parameters that model the presence and
severity of faults in your system. You can then use the vector to generate an ensemble of simulated
data representing a range of healthy and faulty operating conditions.

location — Folder path
pwd (default) | string | character vector

1 Functions

1-116

Folder path at which to store simulation data, specified as a string or a character vector. If you do not
provide location, the function uses the current folder (the path returned by pwd).

In the specified folder, the function writes one MAT-file per simulation. Each file includes the
following variables:

• SimulationInput — The Simulink.SimulationInput object that was used to configure the
model for generating the data in this file. You can use this object to extract information about the
conditions (such as faulty or healthy) under which this simulation was run.

• SimulationMetadata — Other information about the simulation that generated the logged data
in the file.

• A Dataset object containing all the signal and state data that the Simulink model is configured to
log. By default, this variable is called logsout, but the name is configurable in the model.

• PMSignalLogName — The name of the variable that contains the logged data ('logsout' by
default). The simulationEnsembleDatastore command uses this name to parse the data in the
file.

For more information about data logging, see “Export Signal Data Using Signal Logging” (Simulink).
Example: pwd + "\simResults"

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'UseParallel',true

UseParallel — Whether to run simulations in parallel
false (default) | true

Whether to run simulations in parallel, specified as the comma-separated pair consisting of
'UseParallel' and:

• false — Do not run simulations in parallel.
• true — Use a parallel pool to run multiple simulations in parallel (requires Parallel Computing

Toolbox).

ShowProgress — Whether to display simulation progress
true (default) | false

Whether to display simulation progress in the MATLAB command window, specified as the comma-
separated pair consisting of 'ShowProgress' and:

• true — Display a simulation progress line each time an individual simulation run completes.
• false — Do not display simulation progress.

Output Arguments
status — Simulation error status
logical

Simulation error status, returned as a logical value:

 generateSimulationEnsemble

1-117

• 1 (true) if all simulations run to completion without error
• 0 (false) otherwise

E — Simulation errors
structure array

Simulation errors, returned as a structure array with fields:

• 'SimulationInput' — Simulink.SimulationInput for the simulation run that generated the
error

• 'ErrorDiagnostic' — String containing the error

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

See Also
Simulink.SimulationInput | simulationEnsembleDatastore

Topics
“Data Ensembles for Condition Monitoring and Predictive Maintenance”

Introduced in R2018a

1 Functions

1-118

joindata
Merge two frame tables using an outer join

Syntax
table12 = joindata(table1,table2)
table12 = joindata(table1,table2,'Keys',keys)

Description
joindata is a function used in code generated by Diagnostic Feature Designer.

table12 = joindata(table1,table2) merges two tables using an outer join with the first two
columns as the primary keys to merge. In general, an outer join combines table rows where the key
variables have matching values, while also retaining rows where key variables from one input table
have no matches in the other input table (see outerjoin). joindata joins two frame tables. The
first two columns of both frame tables contain the segment start and segment end points. The other
columns in the tables contain data associated with the frame. The data column names must be
unique, that is, data columns in table2 must not have the same name as the data columns in
table1.

Code that is generated by Diagnostic Feature Designer uses joindata when performing frame-
based ensemble statistics processing. In the code, table1 contains existing frame data and table2
contains newly computed frame results.

table12 = joindata(table1,table2,'Keys',keys) uses the columns with the names
specified in keys as the primary keys for the merge. For example, 'Keys',
["TimeStart","TimeEnd"] specifies that joindata use the columns named "TimeStart" and
"TimeEnd" rather than automatically using the first two columns for primary keys.

Examples

Merge Frame Data

Merge two overlapping frame tables.

Create table1, a 4-by-3 table that contains values for variable Var1 in four successive 5-second
frames.

table1 = table(seconds(0:5:15)', seconds(5:5:20)', [3;4;5;6], ...
 'VariableNames', ["TimeStart", "TimeEnd", "Var1"])

table1=4×3 table
 TimeStart TimeEnd Var1
 _________ _______ ____

 0 sec 5 sec 3
 5 sec 10 sec 4
 10 sec 15 sec 5

 joindata

1-119

 15 sec 20 sec 6

Create table2, also a 4-by-3 table, that overlaps the frames in table1. table2 contains the values
for Var2.

table2 = table(seconds(5:5:20)', seconds(10:5:25)', [1;2;3;4], ...
 'VariableNames', ["TimeStart", "TimeEnd", "Var2"])

table2=4×3 table
 TimeStart TimeEnd Var2
 _________ _______ ____

 5 sec 10 sec 1
 10 sec 15 sec 2
 15 sec 20 sec 3
 20 sec 25 sec 4

Merge the two tables using "TimeStart" and "TimeEnd" as the merge keys.

table12 = joindata(table1, table2, 'Keys', ["TimeStart", "TimeEnd"])

table12=5×4 table
 TimeStart TimeEnd Var1 Var2
 _________ _______ ____ ____

 0 sec 5 sec 3 NaN
 5 sec 10 sec 4 1
 10 sec 15 sec 5 2
 15 sec 20 sec 6 3
 20 sec 25 sec NaN 4

table12 is a 5-by-4 table that contains the values for Var1 and Var2 for each frame. Missing values
are represented by NaN.

Input Arguments
table1 — First frame table to merge
table

First frame table to merge, specified as a table with the first two columns representing the segment
start and stop points, and the remaining columns containing the corresponding data.

table2 — Second frame table to merge
table

Second frame table to merge, specified as a table with the first two columns representing the
segment start and stop point, and the remaining columns containing the corresponding data. Data
column names must not match any data column names in table1.

keys — Primary keys
string array | cell array

1 Functions

1-120

Primary keys for table merge, specified as the comma-separated pair containing 'Keys' and either a
string array with two strings or a cell of two character arrays.

Output Arguments
table12 — Merged frame data
table

Merged frame data, returned as a table.

See Also
Diagnostic Feature Designer | frameintervals | readFrameIntervals

Topics
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”

Introduced in R2020a

 joindata

1-121

loadRULModelForCoder
Load and reconstruct RUL model from file for use in code generation

Syntax
mdl = loadRULModelForCoder(filename)

Description
mdl = loadRULModelForCoder(filename) reconstructs an RUL model object from properties
stored in filname, which is a file created using saveRULModelForCoder. Use
loadRULModelForCoder in an entry-point function for code generation to reconstruct the model at
compile time. See “Generate Code for Predicting Remaining Useful Life” for more information.

Input Arguments
filename — File containing saved model
character vector | string

File containing saved model, specified as a character vector or string. filename is a file created
using saveRULModelForCoder. You can specify a full or relative path in filename.

Output Arguments
mdl — RUL model
RUL model object

RUL model loaded from file, returned as a linearDegradationModel or
exponentialDegradationModel object. The RUL model has the same type and property values as
the model used to create filename.

Tips
• loadRULModelForCoder loads the model at compile time, not at run time. Therefore, any

changes you make to the MAT file after compiling are not available at run time. To update the
state of the model at run time, use restoreState.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
restoreState | saveRULModelForCoder

Topics
“Generate Code for Predicting Remaining Useful Life”

1 Functions

1-122

Introduced in R2021a

 loadRULModelForCoder

1-123

lyapunovExponent
Characterize the rate of separation of infinitesimally close trajectories

Syntax
lyapExp = lyapunovExponent(X,fs)
lyapExp = lyapunovExponent(X,fs,lag)
lyapExp = lyapunovExponent(X,fs,[],dim)
lyapExp = lyapunovExponent(X,fs,lag,dim)
[lyapExp,estep,ldiv] = lyapunovExponent(___)
___ = lyapunovExponent(___ ,Name,Value)

lyapunovExponent(___)

Description
lyapExp = lyapunovExponent(X,fs) estimates the Lyapunov exponent of the uniformly sampled
time-domain signal X using sampling frequency fs. Use lyapunovExponent to characterize the rate
of separation of infinitesimally close trajectories in phase space to distinguish different attractors.
Lyapunov exponent is useful in quantifying the level of chaos in a system, which in turn can be used
to detect potential faults.

lyapExp = lyapunovExponent(X,fs,lag) estimates the Lyapunov exponent for the time delay
lag.

lyapExp = lyapunovExponent(X,fs,[],dim) estimates the Lyapunov exponent for the
embedding dimension dim.

lyapExp = lyapunovExponent(X,fs,lag,dim) estimates the Lyapunov exponent for the time
delay lag and embedding dimension dim.

[lyapExp,estep,ldiv] = lyapunovExponent(___) estimates the Lyapunov exponent,
expansion step, and the corresponding logarithmic divergence of the uniformly sampled time-domain
signal X. Use expansion step estep and the corresponding logarithmic divergence ldiv for signal
diagnostics.

___ = lyapunovExponent(___ ,Name,Value) estimates the Lyapunov exponent with additional
options specified by one or more Name,Value pair arguments.

lyapunovExponent(___) with no output arguments creates an average logarithmic divergence
versus expansion step plot.

Use the generated interactive plot to find an appropriate ExpansionRange.

Examples

Visualize and Estimate Largest Lyapunov Exponent

In this example, consider a Lorenz attractor describing a unique set of chaotic solutions.

1 Functions

1-124

Load the data set and sampling frequency fs to the workspace, and visualize the Lorenz attractor in
3-D.

load('lorenzAttractorExampleData.mat','data','fs');
plot3(data(:,1),data(:,2),data(:,3));

For this example, use the x-direction data of the Lorenz attractor. Since Lag is unknown, estimate the
delay using phaseSpaceReconstruction. Set dimension to 3 since the Lorenz attractor is a three-
dimensional system. The dim and lag parameters are required to create the logarithmic divergence
versus expansion step plot.

xdata = data(:,1);
dim = 3;
[~,lag] = phaseSpaceReconstruction(xdata,[],dim)

lag = 10

Create the average logarithmic divergence versus expansion step plot for the Lorenz attractor, using
the lag value obtained in the previous step. Set a sufficiently large expansion range to capture all the
expansion steps.

eRange = 200;
lyapunovExponent(xdata,fs,lag,dim,'ExpansionRange',eRange)

 lyapunovExponent

1-125

The first dashed, vertical green line (on the left) indicates the minimum number of steps used to
estimate the expansion range, while the second vertical green line (on the right), represents the
maximum number of steps used. Together, the first and second vertical lines represent the expansion
range. The dashed red line indicates the linear fit line for the data, within the expansion range.

To compute the largest Lyapunov exponent, you first need to determine the expansion range needed
for accurate estimation.

In the plot, drag the two dashed, vertical green lines to best fit the linear fit line to the original data
line to obtain the expansion range: Kmin and Kmax.

1 Functions

1-126

Note the new values of the expansion range after dragging the two vertical lines for an appropriate
fit.

Since expansion range can only be specified using whole numbers, round-off Kmin and Kmax to the
nearest integer. Find the largest Lyapunov exponent of the Lorenz attractor using the new expansion
range value.

Kmin = 21;
Kmax = 161;
lyapExp = lyapunovExponent(xdata,fs,lag,dim,'ExpansionRange',[Kmin Kmax])

lyapExp = 1.6834

A negative Lyapunov exponent indicates convergence, while positive Lyapunov exponents
demonstrate divergence and chaos. The magnitude of lyapExp is an indicator of the rate of
convergence or divergence of the infinitesimally close trajectories.

Input Arguments
X — Uniformly sampled time-domain signal
vector | array | timetable

Uniformly sampled time-domain signal, specified as a vector, array, or timetable. If X has multiple
columns, lyapunovExponent computes the largest Lyapunov exponent by treating X as a
multivariate signal.

 lyapunovExponent

1-127

If X is specified as a row vector, lyapunovExponent treats it as a univariate signal.

fs — Sampling frequency
scalar

Sampling frequency, specified as a scalar. Sampling frequency or sampling rate is the average
number of samples obtained in one second.

If fs is not supplied, a normalized frequency of 2π is used to compute the Lyapunov exponent. If X is
specified as a timetable, the sampling time is inferred from it.

dim — Embedding dimension
scalar | vector

Embedding dimension, specified as a scalar or vector. dim is equivalent to the 'Dimension' name-
value pair.

lag — Time delay
scalar | vector

Time delay, specified as a scalar or vector. lag is equivalent to the 'Lag' name-value pair.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: …,'Dimension',3

Dimension — Embedding dimension
2 (default) | scalar | vector

Embedding dimension, specified as the comma-separated pair consisting of 'Dimension' and either a
scalar or vector. When Dimension is scalar, every column in X is reconstructed using Dimension.
When Dimension is a vector having same length as the number of columns in X, the reconstruction
dimension for column i is Dimension(i).

Specify Dimension based on the dimension of your system, that is, the number of states. For more
information on embedding dimension, see phaseSpaceReconstruction.

Lag — Delay in phase space reconstruction
1 (default) | scalar | vector

Delay in phase space reconstruction, specified as the comma-separated pair consisting of 'Lag' and
either a scalar or vector. When Lag is scalar, every column in X is reconstructed using Lag. When Lag
is a vector having same length as the number of columns in X, the reconstruction delay for column i
is Lag(i).

The default value of Lag is 1.

If the delay is too small, random noise is introduced in the data. In contrast, if the lag is too large, the
reconstructed dynamics do not represent the true dynamics of the time series. For more information
on estimating optimal delay, see phaseSpaceReconstruction.

1 Functions

1-128

MinSeparation — Mean period
ceil(fs/max(meanfreq(X,fs))) (default) | positive scalar integer

Mean period, specified as the comma-separated pair consisting of 'MinSeparation' and a positive
scalar integer.

MinSeparation is the threshold value used to find the nearest neighbor i* for a point i to estimate
the largest Lyapunov exponent.

The default value of MinSeparation is ceil(fs/max(meanfreq(X,fs))).

ExpansionRange — Range of expansion steps
[1, 5] (default) | 1x2 positive integer array | positive scalar integer

Range of expansion steps, specified as the comma-separated pair consisting of 'ExpansionRange'
and either a 1x2 positive integer array or a positive scalar integer.

The minimum and maximum value of ExpansionRate is used to estimate the local expansion rate to
calculate the Lyapunov exponent.

If ExpansionRange is specified as a scalar M, then the range is set to be [1, M]. ExpansionRange
can only be specified using positive whole numbers and the default value is [1, 5].

Output Arguments
lyapExp — Largest Lyapunov exponent
scalar

Largest Lyapunov exponent, returned as a scalar. lyapExp quantifies the rate of divergence or
convergence of close trajectories in phase space.

A negative Lyapunov exponent indicates convergence, while positive Lyapunov exponents
demonstrate divergence and chaos. The magnitude of lyapExp is an indicator of the rate of
convergence or divergence of the infinitesimally close trajectories.

The ability to discern levels of divergence within data sets is useful in the field of engineering to
estimate component failure by studying their vibration and acoustic signals, or to predict when a ship
would capsize based on its motion.[2][3]

estep — Expansion step used for estimation
array

Expansion step used for estimation, returned as an array. estep is the difference between the
maximum and minimum expansion range split into an equal number of points defined by the
maximum value of ExpansionRange.

ldiv — Logarithmic divergence
array

Logarithmic divergence, returned as an array with the same size as estep. The magnitude of each
value in ldiv corresponds to the logarithmic convergence or divergence of each point in estep.

 lyapunovExponent

1-129

Algorithms
Lyapunov exponent is calculated in the following way:

1 The lyapunovExponent function first generates a delayed reconstruction Y1:N with embedding
dimension m, and lag τ.

2 For a point i, the software then finds the nearest neighbor point i* that satisfies min
i*

Yi− Yi*

such that i− i* > MinSeparation, where MinSeparation, the mean period, is the reciprocal of
the mean frequency.

3 Lyapunov exponent for the entire expansion range is calculated as,

λ(i) = 1
Kmax− Kmin + 1 ∑

K = Kmin

Kmax 1
K * dt ln

Yi + K − Yi* + K
Yi− Yi*

where, Kmin and Kmax represent ExpansionRange, dt is the sampling time and

ldiv = ln
Yi + K − Yi* + K

Yi− Yi*

4 A single value for the Lyapunov exponent is then calculated from the earlier step using the
polyfit command as,

lyapExp = polyfit Kmin Kmax , λ(i)

References
[1] Michael T. Rosenstein , James J. Collins , Carlo J. De Luca. "A practical method for calculating

largest Lyapunov exponents from small data sets ". Physica D 1993. Volume 65. Pages
117-134.

[2] Caesarendra, Wahyu & Kosasih, P & Tieu, Kiet & Moodie, Craig. "An application of nonlinear
feature extraction-A case study for low speed slewing bearing condition monitoring and
prognosis." IEEE/ASME International Conference on Advanced Intelligent Mechatronics:
Mechatronics for Human Wellbeing, AIM 2013.1713-1718. 10.1109/AIM.2013.6584344.

[3] McCue, Leigh & W. Troesch, Armin. (2011). "Use of Lyapunov Exponents to Predict Chaotic Vessel
Motions". Fluid Mechanics and its Applications. 97. 415-432. 10.1007/978-94-007-1482-3_23.

See Also
approximateEntropy | correlationDimension | phaseSpaceReconstruction

Introduced in R2018a

1 Functions

1-130

monotonicity
Quantify monotonic trend in condition indicators

Syntax
Y = monotonicity(X)
Y = monotonicity(X,lifetimeVar)
Y = monotonicity(X,lifetimeVar,dataVar)
Y = monotonicity(X,lifetimeVar,dataVar,memberVar)
Y = monotonicity(___ ,Name,Value)

monotonicity(___)

Description
Y = monotonicity(X) returns the monotonicity of the lifetime data X. Use monotonicity to
quantify the monotonic trend in condition indicators as the system evolves toward failure. The values
of Y range from 0 to 1, where Y is 1 if X is perfectly monotonic and 0 if X is non-monotonic.

As a system gets progressively closer to failure, a suitable condition indicator typically has a
monotonic trend. Conversely, any feature with a non-monotonic trend is a less suitable condition
indicator.

Y = monotonicity(X,lifetimeVar) returns the monotonicity of the lifetime data X using the
lifetime variable lifetimeVar.

Y = monotonicity(X,lifetimeVar,dataVar) returns the monotonicity of the lifetime data X
using the data variables specified by dataVar.

Y = monotonicity(X,lifetimeVar,dataVar,memberVar) returns the monotonicity of the
lifetime data X using the lifetime variable lifetimeVar, the data variables specified by dataVar,
and the member variable memberVar.

Y = monotonicity(___ ,Name,Value) estimates the monotonicity with additional options
specified by one or more Name,Value pair arguments. You can use this syntax with any of the
previous input-argument combinations.

monotonicity(___) with no output arguments plots a bar chart of ranked monotonicity values.

Examples

Monotonicity of Data in Cell Array of Matrices

In this example, consider the lifetime data of 10 identical machines with the following 6 potential
prognostic parameters−constant, linear, quadratic, cubic, logarithmic, and periodic. The data set
machineDataCellArray.mat contains C, which is a 1x10 cell array of matrices where each
element of the cell array is a matrix that contains the lifetime data of a machine. For each matrix in
the cell array, the first column contains the time while the other columns contain the data variables.

 monotonicity

1-131

Load the lifetime data and visualize it against time.

load('machineDataCellArray.mat','C')
display(C)

C=1×10 cell array
 Columns 1 through 4

 {219x7 double} {189x7 double} {202x7 double} {199x7 double}

 Columns 5 through 8

 {229x7 double} {184x7 double} {224x7 double} {208x7 double}

 Columns 9 through 10

 {181x7 double} {197x7 double}

for k = 1:length(C)
 plot(C{k}(:,1), C{k}(:,2:end));
 hold on;
end

Observe the 6 different condition indicators–constant, linear, quadratic, cubic, logarithmic, and
periodic–for all 10 machines on the plot.

Visualize the monotonicity of the potential prognostic features.

1 Functions

1-132

monotonicity(C)

From the histogram plot, observe that the features Var2, Var4 and Var5 rank better than the others.
Hence, these features are more appropriate for remaining useful life predictions since they are the
best indicators of machine health.

Monotonicity of Data in Cell Array of Tables

In this example, consider the lifetime data of 10 identical machines with the following 6 potential
prognostic parameters−constant, linear, quadratic, cubic, logarithmic, and periodic. The data set
machineDataTable.mat contains T, which is a 1x10 cell array of tables where each element of the
cell array contains a table of lifetime data for a machine.

Load and display the data.

load('machineDataTable.mat','T');
display(T)

T=1×10 cell array
 Columns 1 through 4

 {219x7 table} {189x7 table} {202x7 table} {199x7 table}

 Columns 5 through 8

 monotonicity

1-133

 {229x7 table} {184x7 table} {224x7 table} {208x7 table}

 Columns 9 through 10

 {181x7 table} {197x7 table}

head(T{1},2)

ans=2×7 table
 Time Constant Linear Quadratic Cubic Logarithmic Periodic
 ____ ________ ______ _________ ______ ___________ ________

 0 3.2029 11.203 7.7029 3.8829 2.2517 0.2029
 0.05 2.8135 10.763 7.2637 3.6006 1.8579 0.12251

Note that every table in the cell array contains the lifetime variable 'Time' and the data variables
'Constant', 'Linear', 'Quadratic', 'Cubic', 'Logarithmic', and 'Periodic'.

Compute monotonicity using Spearman's rank correlation method with Time as the lifetime variable.

Y = monotonicity(T,'Time','Method','rank')

Y=1×6 table
 Constant Linear Quadratic Cubic Logarithmic Periodic
 ________ ______ _________ _______ ___________ ________

 0.069487 1 0.17777 0.97993 0.99957 0.059208

From the resulting table of monotonicity values, observe that the linear, cubic, and logarithmic
features have values closer to 1. Hence, these three features are more appropriate for predicting
remaining useful life since they are the best indicators of machine health.

Visualize Monotonicity of Lifetime Data in Ensemble Datastore

Consider the lifetime data of 4 machines. Each machine has 4 fault codes for the potential condition
indicators−voltage, current, and power. monotonicityEnsemble.zip is a collection of 4 files
where every file contains a timetable of lifetime data for each machine − tbl1.mat, tbl2.mat,
tbl3.mat, and tbl4.mat. You can also use files containing data for multiple machines. For each
timetable, the organization of the data is as follows:

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session, change the global execution environment by using the mapreducer function.

mapreducer(0)

1 Functions

1-134

Extract the compressed files, read the data in the timetables, and create a
fileEnsembleDatastore object using the timetable data. For more information on creating a file
ensemble datastore, see fileEnsembleDatastore.

unzip monotonicityEnsemble.zip;
ens = fileEnsembleDatastore(pwd,'.mat');
ens.DataVariables = {'Voltage','Current','Power','FaultCode','Machine'};
% Make sure that the function for reading data is on path
addpath(fullfile(matlabroot,'examples','predmaint','main'))
ens.ReadFcn = @readtable_data;
ens.SelectedVariables = {'Voltage','Current','Power','FaultCode','Machine'};

Visualize the monotonicity of the potential prognostic features with 'Machine' as the member
variable and group the lifetime data by 'FaultCode'. Grouping the lifetime data ensures that
monotonicity calculates the metric for each fault code separately.

monotonicity(ens,'MemberVariable','Machine','GroupBy','FaultCode');

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1.7 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.2 sec
Evaluation completed in 0.43 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.75 sec
Evaluation completed in 0.8 sec

 monotonicity

1-135

monotonicity returns a histogram plot with the features ranked by their monotonicity values. A
higher monotonicity value indicates a more suitable prognostic parameter. For instance, the
candidate feature Current has the highest monotonic trend for machines with FaultCode 1.

rmpath(fullfile(matlabroot,'examples','predmaint','main')) % Reset path

Input Arguments
X — Lifetime data
cell array of matrices | cell array of tables and timetables | fileEnsembleDatastore object | table |
timetable

Lifetime data, specified as a cell array of matrices, cell array of tables and timetables,
fileEnsembleDatastore object, table, or timetable. Lifetime data contains run-to-failure data of
the systems being monitored. The term lifetime here refers to the life of the machine defined in terms
of the units you use to measure system life. Units of lifetime can be quantities such as the distance
traveled (miles), fuel consumed (gallons), or time since the start of operation (days).

If X is

• a cell array of matrices or tables, the function assumes that each matrix or table contains columns
of lifetime data for a system. Each column of every matrix or table, except the first column,
contains data for a prognostic variable. 'Var1','Var2', ... can be used to refer to the matrix
columns that contain the lifetime data. For instance, the file machineDataCellArray.mat
contains a 1-by-10 cell array of matrices C, where each of the 10 matrices contains data for a
particular machine.

• a table or timetable, the function assumes that each column, except the first one, contains
columns of lifetime data. The table variable names can be used to refer to the columns that
contain the lifetime data. If lifetimeVar is not specified when X is a table, then the first data
column is used as the lifetime variable.

• a fileEnsembleDatastore object, specify the data variables dataVar and member variables
memberVar to be used. If lifetimeVar is not specified, then the first data column is used as the
lifetime variable for computation.

Each numerical member in X is of type double.

lifetimeVar — Lifetime variable
string | character vector

Lifetime variable, specified as a string or character vector. lifetimeVar measures the lifetime of
the systems being monitored and the lifetime data is sorted with respect to lifetimeVar. The value
of lifetimeVar must be a valid ensemble or table variable name.

For a cell array of matrices, the value 'Time' can be used to refer to the first column of each matrix,
which is assumed to contain the lifetime variable. For instance, the file
machineDataCellArray.mat contains the cell array C, where the first column in each matrix
contains the lifetime variable while the other columns contain the data variables.

dataVar — Data variables
string array | character vector | cell array of character vectors

1 Functions

1-136

Data variables, specified as a string array, character vector, or cell array of character vectors. Data
variables are the main content of the members of an ensemble. Data variables can include measured
data or derived data for the analysis and development of predictive maintenance algorithms.

If X is

• a fileEnsembleDatastore object, the value of dataVar supersedes the DataVariables
property of the ensemble.

• a cell array of matrices, the value 'Time' can be used to refer to the first column of each matrix,
that is, the lifetime variable lifetimeVar. 'Var1','Var2', ... can be used to refer to the
other matrix columns which contain the lifetime data. For instance, the file
machineDataCellArray.mat contains the cell array C where the first column in each matrix
contains the lifetime variable. The other columns in the cell array C contain the data variables.

• a table, the table variable names can be used to refer to the columns which contain the lifetime
data.

The values of dataVar must be valid ensemble or table variable names. If dataVar is not specified,
the computation includes all data columns except the one specified in lifetimeVar. For instance,
suppose that each entry in a cell array is a table with variables A, B, C, and D. Setting dataVar to
["A","D"] uses only A and D for the computation while C and D are ignored.

memberVar — Member variable
string | character vector

Member variable, specified as a string or character vector. Use memberVar to specify the variable for
identifying the systems or machines in lifetime data X. For instance, in the
fileEnsembleDatastore object, the fifth column in each timetable contains numbers that identify
data from a particular machine. The column name corresponds to the member variable memberVar.

memberVar is ignored when X is specified as a cell array of matrices or tables.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ...,'Method','rank'

LifeTimeVariable — Lifetime variable
strings(0) (default) | string | character vector

Lifetime variable, specified as the comma-separated pair consisting of 'LifeTimeVariable' and
either a string or character vector. If 'LifeTimeVariable' is not specified, then the first data
column is used.

'LifeTimeVariable' is equivalent to the input argument lifetimeVar.

DataVariables — Data variables
strings(0) (default) | string array | character vector | cell array of character vectors

Data variables, specified as the comma-separated pair consisting of 'DataVariables' and either a
string array, character vector or cell array of character vectors.

'DataVariables' is equivalent to the input argument dataVar.

 monotonicity

1-137

MemberVariable — Member variables
[] (default) | string | character vector

Member variables, specified as the comma-separated pair consisting of 'MemberVariable' and either
a string or character vector.

'MemberVariable' is equivalent to the input argument memberVar.

GroupBy — Grouping criterion
[] (default) | string | character vector

Grouping criterion, specified as the comma-separated pair consisting of 'GroupBy' and either a string
or character vector. Use 'GroupBy' to specify the variables for grouping the lifetime data X by
operating conditions.

The function computes the metric separately for each group that results from applying the criterion,
such as a fault condition, specified by 'GroupBy'. For instance, in the fileEnsembleDatastore
object ens, the fourth column in each timetable in ens contains the variable 'FaultCode'. The
metric is computed for each machine by grouping the data by 'FaultCode'.

You can only group variables when X is defined as a fileEnsembleDatastore object, table,
timetable, or cell array of tables or timetables.

WindowSize — Size of the centered moving average window for data smoothing
[] (default) | scalar | two-element vector

Size of the centered moving average window for data smoothing, specified as the comma-separated
pair consisting of 'WindowSize' and either a scalar or two-element vector. A Savitzky-Golay filter is
used for data smoothing. For more information, see smoothdata.

If 'WindowSize' is not specified, the window length is automatically determined from lifetime data X
using smoothdata(X,'sgolay'). Set 'WindowSize' to 0 to turn off data smoothing.

Method — Method to compute monotonicity
'sign' (default) | 'rank'

Method to compute monotonicity, specified as the comma-separated pair consisting of 'Method' and
either 'sign' or 'rank'.

• 'sign', Use the signum formula.
• 'rank', Use Spearman's rank correlation formula.

For more information, see “Algorithms” on page 1-139.

Output Arguments
Y — Monotonicity of lifetime data
vector | table

Monotonicity of lifetime data, returned as a vector or table.

monotonicity characterizes the trend of a feature as the system evolves toward failure. As a system
gets progressively closer to failure, a suitable condition indicator typically has a monotonic trend.

1 Functions

1-138

Conversely, any feature with a non-monotonic trend is a less suitable condition indicator. The values
of Y range from 0 to 1.

• Y is 1 if X is perfectly monotonic.
• Y is 0 if X is perfectly non-monotonic.

Selecting appropriate estimation parameters out of all available features is the first step in building a
reliable remaining useful life prediction engine. The monotonicity values in Y are useful to determine
which condition indicators best track the degradation process of the systems being monitored. The
higher the monotonic trend, the more desirable the feature is for prognostics.

When 'GroupBy' is not specified, then Y is returned as a row vector or single-row table. Conversely,
when 'GroupBy' is specified, then each row in Y corresponds to one group.

Limitations
• When X is a tall table or tall timetable, monotonicity nevertheless loads the complete array into

memory using gather. If the memory available is inadequate, then monotonicity returns an
error.

Algorithms
Monotonicity is computed in the following two ways as specified by the 'Method' option.

Signum Formula or Sign Method

When you specify 'Method' as 'sign', the computation of monotonicity uses this formula:

monotonicity = 1
M ∑

j = 1

M
∑

k = 1

N j− 1 sgn x j k + 1 − x j k
N j− 1

where xj represents the vector of measurements of a feature on the jth system, M is the number of
systems monitored, and Nj is the number of measurements on the jth system.

Spearman's Rank Correlation Coefficient Method

When you specify 'Method' as 'rank', the computation of monotonicity uses this formula:

monotonicity = 1
M ∑

j = 1

M
corr rank x j , rank t j

where M is the number of systems monitored and tj is the vector of time points corresponding to the
measurement vector xj.

References
[1] Coble, J., and J. W. Hines. "Identifying Optimal Prognostic Parameters from Data: A Genetic

Algorithms Approach." In Proceedings of the Annual Conference of the Prognostics and
Health Management Society. 2009.

[2] Coble, J. "Merging Data Sources to Predict Remaining Useful Life - An Automated Method to
Identify Prognostics Parameters." Ph.D. Thesis. University of Tennessee, Knoxville, TN, 2010.

 monotonicity

1-139

[3] Lei, Y. Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery.
Xi'an, China: Xi'an Jiaotong University Press, 2017.

[4] Lofti, S., J. B. Ali, E. Bechhoefer, and M. Benbouzid. "Wind turbine high-speed shaft bearings
health prognosis through a spectral Kurtosis-derived indices and SVR." Applied Acoustics Vol.
120, 2017, pp. 1-8.

See Also
fileEnsembleDatastore | prognosability | trendability

Topics
“Wind Turbine High-Speed Bearing Prognosis”
“Feature Selection for Remaining Useful Life Prediction”

Introduced in R2018b

1 Functions

1-140

phaseSpaceReconstruction
Convert observed time series to state vectors

Syntax
XR = phaseSpaceReconstruction(X,lag,dim)
[XR,eLag,eDim] = phaseSpaceReconstruction(X)
[XR,eLag,eDim] = phaseSpaceReconstruction(X,lag)
[XR,eLag,eDim] = phaseSpaceReconstruction(X,[],dim)
[___] = phaseSpaceReconstruction(___ ,Name,Value)

phaseSpaceReconstruction(___)

Description
XR = phaseSpaceReconstruction(X,lag,dim) returns the reconstructed phase space XR of the
uniformly sampled time-domain signal X with time delay lag and embedding dimension dim as
inputs.

Use phaseSpaceReconstruction to verify the system order and reconstruct all dynamic system
variables, while preserving system properties. Reconstructing the phase space is useful when limited
data is available, or when the phase space dimension and lag is unknown. The nonlinear features
approximateEntropy, correlationDimension, and lyapunovExponent use
phaseSpaceReconstruction as the first step of the computation.

[XR,eLag,eDim] = phaseSpaceReconstruction(X) returns reconstructed phase space XR
along with the estimated delay eLag and embedding dimension eDim.

[XR,eLag,eDim] = phaseSpaceReconstruction(X,lag) returns the reconstructed phase
space XR of uniformly sampled time domain signal X and embedding dimension eDim using time delay
specified by lag.

[XR,eLag,eDim] = phaseSpaceReconstruction(X,[],dim) returns the reconstructed phase
space XR of uniformly sampled time domain signal X and time delay eLag using embedding dimension
specified by dim.

[___] = phaseSpaceReconstruction(___ ,Name,Value) returns the reconstructed phase
space XR with additional options specified by one or more Name,Value pair arguments.

phaseSpaceReconstruction(___) with no output arguments creates a matrix of sub-axes of the
reconstructed phase space with histogram plots along the diagonal.

Examples

Reconstruct Data using Phase Space Reconstruction

In this example, assume that you have measurements for a Lorenz Attractor. Your measurements are
along the x direction only, but the attractor is a three-dimensional system. Using this limited data,
reconstruct the phase space such that the properties of the original system are preserved.

 phaseSpaceReconstruction

1-141

Load the Lorenz Attractor data and visualize its x, y and z measurements on a 3-D plot.

load('lorenzAttractorExampleData.mat','data');
plot3(data(:,1),data(:,2),data(:,3));

Estimate the lag and dimension using the x-direction measurement.

xdata = data(:,1);
[~,eLag,eDim] = phaseSpaceReconstruction(xdata)

eLag = 10

eDim = 3

Since the Lorenz Attractor has data in 3 dimensions, the estimated embedding dimension eDim is 3.

Visualize the reconstructed phase space using the estimated lag and embedding dimension.

phaseSpaceReconstruction(xdata,eLag,eDim);

1 Functions

1-142

As observed from the 3x3 phase space plot, the topology of the attractor is recovered. x1 t + 10 and
x1 t + 20 are the other two states reconstructed with the estimated lag value of 10. The diagonal
plots (1,1), (2,2) and (3,3) represent the histogram of x1 t , x1 t + 10 and x1 t + 20 data, respectively.

Input Arguments
X — Uniformly sampled time-domain signal
vector | array | timetable

Uniformly sampled time-domain signal, specified as a vector, array, or timetable. When multiple
columns exist in X, each column is treated as an independent time series.

If X is specified as a row vector, phaseSpaceReconstruction treats it as a univariate signal.

dim — Embedding dimension
scalar | vector

Embedding dimension, specified as a scalar or vector. dim is the dimension of the space in which you
reconstruct a phase portrait starting from your measurements.

When dim is scalar, every column in X is reconstructed using dim. When dim is a vector having same
length as the number of columns in X, the reconstruction dimension for column i is dim(i).

lag — Delay value used in phase space reconstruction
scalar | vector

 phaseSpaceReconstruction

1-143

Delay value used in phase space reconstruction, specified as a scalar or vector. When lag is scalar,
every column in X is reconstructed using lag. When lag is a vector having same length as the
number of columns in X, the reconstruction delay for column i is lag(i).

If the time delay is too small, random noise is introduced in the states. In contrast, if the lag is too
large, the reconstructed dynamics do not represent the true dynamics of the time series.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: …'HistogramBins',12

HistogramBins — Number of bins for discretization
10 (default) | scalar

Number of bins for discretization, specified as the comma-separated pair consisting of
'HistogramBins' and a scalar. HistogramBins is required to compute the Average Mutual
Information (AMI) to estimate delay eLag.

Set the value of HistogramBins based on the length of X.

MaxLag — Maximum value of lag
10 (default) | scalar

Maximum value of lag, specified as the comma-separated pair consisting of 'MaxLag' and a scalar.
MaxLag is used to estimate delay est_delay using the Average Mutual Information (AMI) algorithm.

PercentFalseNeighbors — Factor to determine embedding dimension
0.1 (default) | scalar

Factor to determine embedding dimension, specified as the comma-separated pair consisting of
'PercentFalseNeighbors' and a scalar. When percentage of false nearest neighbors drops below
the tuning parameter PercentFalseNeighbors at a dimension d, d is considered as the embedding
dimension.

The default value of PercentFalseNeighbors is 0.1 and permissible values lie within the range 0
through 1.

DistanceThreshold — Distance threshold to determine false neighbors
10 (default) | scalar

Distance threshold to determine false neighbors, specified as the comma-separated pair consisting of
'DistanceThreshold' and a scalar. DistanceThreshold is a tuning parameter to determine the
number of points that are false nearest neighbors in the reconstructed phase space.

The default value of DistanceThreshold is 10, and suggested values lie within the range 10
through 50.

MaxDim — Maximum value of embedding dimension
5 (default) | scalar

Maximum value of embedding dimension, specified as the comma-separated pair consisting of
'MaxDim' and a scalar.

1 Functions

1-144

Change the value of MaxDim if the number of states of your system exceeds 5.

Output Arguments
XR — Reconstructed phase space
array | timetable

Reconstructed phase space, returned as either an array or timetable. XR contains state vectors based
on the embedding dimension and lag value.

eLag — Estimated time delay
scalar

Estimated time delay, returned as a scalar, regardless of the size of X.

eLag is estimated using Average Mutual Information (AMI) algorithm. For more information, see
“Algorithms” on page 1-145.

eDim — Estimated embedding dimension
scalar

Estimated embedding dimension, returned as a scalar, regardless of the size of X.

eDim is estimated using False Nearest Neighbor (FNN) algorithm. For more information, see
“Algorithms” on page 1-145.

Algorithms
Phase Space Reconstruction

For a uniformly sampled univariate time signal X1 = x1, 1, x1, 2, ..., x1, N
T,

phaseSpaceReconstruction computes the delayed reconstruction

X1, i
r = x1, i, x1, i + τ1, ..., x1, i + m1 − 1 τ1 , i = 1, 2, ..., N − m1− 1 τ1

where, N is the length of the time series, τ1 is the lag, and m1 is the embedding dimension for X1.

Similarly, for a multivariate time series X given by,

X = X1, X2, ..., XS =
x1, 1

⋮
x1, N

…
⋱
⋯

xS, 1

⋮
xS, N

phaseSpaceReconstruction computes the reconstruction for each time series as,

Xi
r = X1, i

r , X2, i
r , ..., XS, i

r , i = 1, 2, ..., N − max mi − 1 max τi

where S is the number of measurements, and N is the length of the time series.

Delay Estimation

The delay for phase space reconstruction is estimated using Average Mutual Information (AMI). For
reconstruction, the time delay is set to be the first local minimum of AMI.

 phaseSpaceReconstruction

1-145

Average Mutual Information is computed as,

AMI T = ∑
i = 1

N
p xi, xi + T log2

p xi, xi + T
p xi p xi + T

where, N is the length of the time series and Τ = 1:MaxLag.

Embedding Dimension Estimation

The embedding dimension for phase space reconstruction is estimated using False Nearest Neighbor
(FNN) algorithm.

• For a point i at dimension d, the points Xr
i and its nearest point Xr*

i in the reconstructed phase
space {Xr

i}, i = 1:N, are false neighbors if

Ri
2 d + 1 − Ri

2 d
Ri

2 d
> DistanceThreshold

where, Ri
2 d = Xi

r − Xi
r * 2 is the distance metric.

• The estimated embedding dimension d is the smallest value that satisfies the condition pfnn <
PercentFalseNeighbors where, pfnn is the ratio of FNN points to total number of points in the
reconstructed phase space.

References
[1] Rhodes, Carl & Morari, Manfred. "False Nearest Neighbors Algorithm and Noise Corrupted Time

Series." Physical Review. E. 55.10.1103/PhysRevE.55.6162.

[2] Kliková, B., and Aleš Raidl. "Reconstruction of phase space of dynamical systems using method of
time delay." Proceedings of the 20th Annual Conference of Doctoral Students WDS 2011.

[3] I. Vlachos, D. Kugiumtzis, "State Space Reconstruction for Multivariate Time Series Prediction",
Nonlinear Phenomena in Complex Systems, Vol 11, No 2, pp 241-249, 2008.

[4] Kantz, H., and Schreiber, T. Nonlinear Time Series Analysis. Cambridge: Cambridge University
Press, Vol. 7, 2004.

See Also
approximateEntropy | correlationDimension | lyapunovExponent

Introduced in R2018a

1 Functions

1-146

plot
Plot survival function for covariate survival remaining useful life model

Syntax
plot(mdl)
plot(mdl,covariates)

Description
plot(mdl) plots the baseline survival function of the fitted covariate survival model mdl against the
life time value for which it was computed. The plot data is stored in the
BaselineCumulativeHazard property of mdl.

plot(mdl,covariates) plots the survival function computed for the covariate data in
covariates. To obtain the survival function, the hazard rate is computed using the covariates and
combined with the baseline survival function.

Examples

Train Covariate Survival Model

Load training data.

load('covariateData.mat')

This data contains battery discharge times and related covariate information. The covariate variables
are:

• Temperature
• Load
• Manufacturer

The manufacturer information is a categorical variable that must be encoded.

Create a covariate survival model.

mdl = covariateSurvivalModel;

Train the survival model using the training data, specifying the life time variable, data variables, and
encoded variable. There is no censor variable for this training data.

fit(mdl,covariateData,"DischargeTime",["Temperature","Load","Manufacturer"],[],"Manufacturer")

Successful convergence: Norm of gradient less than OPTIONS.TolFun

Plot the baseline survival function for the model.

plot(mdl)

 plot

1-147

Predict RUL Using Covariate Survival Model

Load training data.

load('covariateData.mat')

This data contains battery discharge times and related covariate information. The covariate variables
are:

• Temperature
• Load
• Manufacturer

The manufacturer information is a categorical variable that must be encoded.

Create a covariate survival model, and train it using the training data.

mdl = covariateSurvivalModel('LifeTimeVariable',"DischargeTime",'LifeTimeUnit',"hours",...
 'DataVariables',["Temperature","Load","Manufacturer"],'EncodedVariables',"Manufacturer");
fit(mdl,covariateData)

Successful convergence: Norm of gradient less than OPTIONS.TolFun

1 Functions

1-148

Suppose you have a battery pack manufactured by maker B that has run for 30 hours. Create a test
data table that contains the usage time, DischargeTime, and the measured ambient temperature,
TestAmbientTemperature, and current drawn, TestBatteryLoad.

TestBatteryLoad = 25;
TestAmbientTemperature = 60;
DischargeTime = hours(30);
TestData = timetable(TestAmbientTemperature,TestBatteryLoad,"B",'RowTimes',hours(30));
TestData.Properties.VariableNames = {'Temperature','Load','Manufacturer'};
TestData.Properties.DimensionNames{1} = 'DischargeTime';

Predict the RUL for the battery.

estRUL = predictRUL(mdl,TestData)

estRUL = duration
 38.337 hr

Plot the survival function for the covariate data of the battery.

plot(mdl,TestData)

Input Arguments
mdl — Covariate survival RUL model
covariateSurvivalModel object

 plot

1-149

Covariate survival RUL model, specified as a covariateSurvivalModel object.

plot plots the data in the BaselineCumulativeHazard property of mdl, which is a two-column
array. The second column contains the baseline survival functions values, and the first column
contains the corresponding life time values. The life time values are plotted in the units specified by
the LifeTimeUnits property of mdl.

covariates — Current covariate values
row vector | table with one row | timetable with one row

Current covariate values for the component, specified as a:

• Row vector whose elements specify the component covariate values only and not the life time
values. The number of covariate values must match the number and order of the covariate data
columns used when estimating mdl using fit.

• table or timetable with one row. The table must contain the variables specified in the
DataVariables property of mdl.

If the covariate data contains encoded variables, then you must specify covariates using a table
or timetable.

To obtain the survival function, the hazard rate is computed using the covariates and combined with
the baseline survival function. For more information, see “Cox Proportional Hazards Model”.

See Also
Functions
covariateSurvivalModel | coxphfit | predictRUL

Topics
“Cox Proportional Hazards Model”

Introduced in R2018a

1 Functions

1-150

predictRUL
Estimate remaining useful life for a test component

Syntax
estRUL = predictRUL(mdl,data)
estRUL = predictRUL(mdl,data,bounds)

estRUL = predictRUL(mdl,threshold)

estRUL = predictRUL(mdl,usageTime)

estRUL = predictRUL(mdl,covariates)

estRUL = predictRUL(___ ,Name,Value)

[estRUL,ciRUL] = predictRUL(___)
[estRUL,ciRUL,pdfRUL] = predictRUL(___)
[estRUL,ciRUL,pdfRUL,histRUL] = predictRUL(___)

Description
The predictRUL function estimates the remaining useful life (RUL) of a test component given an
estimation model and information about its usage time and degradation profile. Before predicting the
RUL, you must first configure your estimation model using historical data regarding the health of an
ensemble of similar components, such as multiple machines manufactured to the same specifications.
To do so, use the fit function.

Using predictRUL, you can estimate the remaining useful life for the following types of estimation
models:

• Degradation models
• Survival models
• Similarity models

For a basic example illustrating RUL prediction, see “Update RUL Prediction as Data Arrives”.

For general information on predicting remaining useful life using these models, see “RUL Estimation
Using RUL Estimator Models”.

estRUL = predictRUL(mdl,data) estimates the remaining useful life for a component using
similarity model mdl and the degradation feature profiles in data. data contains feature
measurements over the life span of the component up to the current life time.

estRUL = predictRUL(mdl,data,bounds) estimates the remaining useful life for a component
using a similarity model and the feature bounds specified in bounds.

estRUL = predictRUL(mdl,threshold) estimates the RUL for a component using degradation
model mdl and the current life time variable value stored in mdl. The RUL is the remaining time
before the forecasted response of the model reaches the threshold value threshold.

 predictRUL

1-151

estRUL = predictRUL(mdl,usageTime) estimates the RUL for a component using reliability
survival model mdl and the current usage time for the component.

estRUL = predictRUL(mdl,covariates) estimates the RUL of a component using covariate
survival model mdl and the current covariate values for the component.

estRUL = predictRUL(___ ,Name,Value) specifies additional options using one or more name-
value pair arguments.

[estRUL,ciRUL] = predictRUL(___) returns the confidence interval associated with the RUL
estimation.

[estRUL,ciRUL,pdfRUL] = predictRUL(___) returns the probability density function for the
RUL estimation.

[estRUL,ciRUL,pdfRUL,histRUL] = predictRUL(___) returns the histogram of component
similarity scores when estimating RUL using a similarity model.

Examples

Train Pairwise Similarity Model

Load training data.

load('pairwiseTrainVectors.mat')

The training data is a cell array of column vectors. Each column vector is a degradation feature
profile for a component.

Create a pairwise similarity model with default settings.

mdl = pairwiseSimilarityModel;

Train the similarity model using the training data.

fit(mdl,pairwiseTrainVectors)

Update Linear Degradation Model and Predict RUL

Load observation data.

load('linTestData.mat','linTestData1')

For this example, assume that the training data is not historical data, but rather real-time
observations of the component condition.

Based on knowledge of the degradation feature limits, define a threshold condition indicator value
that indicates the end-of-life of a component.

threshold = 60;

Create a linear degradation model arbitrary prior distribution data and a specified noise variance.
Also, specify the life time and data variable names for the observation data.

1 Functions

1-152

mdl = linearDegradationModel('Theta',1,'ThetaVariance',1e6,'NoiseVariance',0.003,...
 'LifeTimeVariable',"Time",'DataVariables',"Condition",...
 'LifeTimeUnit',"hours");

Observe the component condition for 50 hours, updating the degradation model after each
observation.

for i=1:50
 update(mdl,linTestData1(i,:));
end

After 50 hours, predict the RUL of the component using the current life time value stored in the
model.

estRUL = predictRUL(mdl,threshold)

estRUL = duration
 50.301 hr

The estimated RUL is about 50 hours, which indicates a total predicted life span of about 100 hours.

Predict RUL Using Exponential Degradation Model

Load training data.

load('expTrainTables.mat')

The training data is a cell array of tables. Each table is a degradation feature profile for a component.
Each profile consists of life time measurements in the "Hours" variable and corresponding
degradation feature measurements in the "Condition" variable.

Create an exponential degradation model, specifying the life time variable units.

mdl = exponentialDegradationModel('LifeTimeUnit',"hours");

Train the degradation model using the training data. Specify the names of the life time and data
variables.

fit(mdl,expTrainTables,"Time","Condition")

Load testing data, which is a run-to-failure degradation profile for a test component. The test data is a
table with the same life time and data variables as the training data.

load('expTestData.mat')

Based on knowledge of the degradation feature limits, define a threshold condition indicator value
that indicates the end-of-life of a component.

threshold = 500;

Assume that you measure the component condition indicator every hour for 150 hours. Update the
trained degradation model with each measurement. Then, predict the remaining useful life of the
component at 150 hours. The RUL is the forecasted time at which the degradation feature will pass
the specified threshold.

 predictRUL

1-153

for t = 1:150
 update(mdl,expTestData(t,:))
end
estRUL = predictRUL(mdl,threshold)

estRUL = duration
 136.45 hr

The estimated RUL is around 137 hours, which indicates a total predicted life span of 287 hours.

Predict RUL Using Covariate Survival Model

Load training data.

load('covariateData.mat')

This data contains battery discharge times and related covariate information. The covariate variables
are:

• Temperature
• Load
• Manufacturer

The manufacturer information is a categorical variable that must be encoded.

Create a covariate survival model, and train it using the training data.

mdl = covariateSurvivalModel('LifeTimeVariable',"DischargeTime",'LifeTimeUnit',"hours",...
 'DataVariables',["Temperature","Load","Manufacturer"],'EncodedVariables',"Manufacturer");
fit(mdl,covariateData)

Successful convergence: Norm of gradient less than OPTIONS.TolFun

Suppose you have a battery pack manufactured by maker B that has run for 30 hours. Create a test
data table that contains the usage time, DischargeTime, and the measured ambient temperature,
TestAmbientTemperature, and current drawn, TestBatteryLoad.

TestBatteryLoad = 25;
TestAmbientTemperature = 60;
DischargeTime = hours(30);
TestData = timetable(TestAmbientTemperature,TestBatteryLoad,"B",'RowTimes',hours(30));
TestData.Properties.VariableNames = {'Temperature','Load','Manufacturer'};
TestData.Properties.DimensionNames{1} = 'DischargeTime';

Predict the RUL for the battery.

estRUL = predictRUL(mdl,TestData)

estRUL = duration
 38.337 hr

Plot the survival function for the covariate data of the battery.

1 Functions

1-154

plot(mdl,TestData)

Predict RUL Using Reliability Survival Model and View PDF

Load training data.

load('reliabilityData.mat')

This data is a column vector of duration objects representing battery discharge times.

Create a reliability survival model, specifying the life time variable and life time units.

mdl = reliabilitySurvivalModel('LifeTimeVariable',"DischargeTime",'LifeTimeUnit',"hours");

Train the survival model using the training data.

fit(mdl,reliabilityData)

Predict the life span of a new component, and obtain the probability distribution function for the
estimate.

[estRUL,ciRUL,pdfRUL] = predictRUL(mdl);

Plot the probability distribution.

 predictRUL

1-155

bar(pdfRUL.RUL,pdfRUL.ProbabilityDensity)
xlabel('Remaining useful life (hours)')
xlim(hours([40 90]))

Improve the distribution view by providing the number of bins and bin size for the prediction.

[estRUL,ciRUL,pdfRUL] = predictRUL(mdl,'BinSize',0.5,'NumBins',500);
bar(pdfRUL.RUL,pdfRUL.ProbabilityDensity)
xlabel('Remaining useful life (hours)')
xlim(hours([40 90]))

1 Functions

1-156

Predict the RUL for a component that has been operating for 50 hours.

[estRUL,ciRUL,pdfRUL] = predictRUL(mdl,hours(50),'BinSize',0.5,'NumBins',500);
bar(pdfRUL.RUL,pdfRUL.ProbabilityDensity)
xlabel('Remaining useful life (hours)')
xlim(hours([0 40]))

 predictRUL

1-157

Input Arguments
mdl — Remaining useful life prediction model
degradation model | survival model | similarity model

Remaining useful life prediction model, specified as one of the following models.

RUL Model Groups More Information
Degradation models linearDegradationModel

exponentialDegradationModel
Survival models reliabilitySurvivalModel

covariateSurvivalModel
Similarity models hashSimilarityModel

pairwiseSimilarityModel
residualSimilarityModel

For more information on the different model types and when to use them, see “Models for Predicting
Remaining Useful Life”.

data — Degradation feature measurements
array | table | timetable

1 Functions

1-158

Degradation feature profiles for estimating the RUL using similarity models, measured over the life
span of a component up to its current life time, specified as one of the following:

• (N+1)-by-M numeric array, where N is the number of features and M is the number of feature
measurements. In each row, the first column contains the usage time and the remaining columns
contain the corresponding degradation feature measurements. The order of the features must
match the order specified in the DataVariables property of mdl.

• table or timetable object. The table must contain variables with names that match the strings
in the DataVariables and LifeTimeVariable properties of mdl.

data applies when mdl is a hashSimilarityModel, pairwiseSimilarityModel, or
residualSimilarityModel, object.

bounds — Degradation feature bounds
scalar | two-column array

Degradation feature bounds, which indicate the effective life span of a component, specified as an N-
by-2 array, where N is the number of degradation features. For the ith feature, bounds(i,1) is the
lower bound on the feature and bounds(i,2) is the upper bound. The order of the features must
match the order specified in the DataVariables property of mdl.

Select bounds based on your knowledge of the allowable bounds for the degradation features.

bounds applies when mdl is a hashSimilarityModel, pairwiseSimilarityModel, or
residualSimilarityModel object.

threshold — Data variable threshold
scalar

Data variable threshold limits for degradation models, specified as a scalar value. The remaining
useful life is the remaining time before the forecasted response of the model reaches the threshold
value.

The sign of the Theta property of mdl indicates the direction of degradation growth. If Theta is:

• Positive, then threshold is an upper bound on the degradation feature
• Negative, then threshold is a lower bound on the degradation feature

Select threshold based on your knowledge of the allowable bounds for the degradation feature.

threshold applies when mdl is a linearDegradationModel or
exponentialDesgradationModel object.

usageTime — Current usage time
scalar | duration object

Current usage time of the component, specified as a scalar value or a duration object. The units of
usageTime must be compatible with the LifeTimeUnit property of mdl.

covariates — Current covariate values and usage time
row vector | table with one row | timetable with one row

Current covariate values and usage time for the component, specified as a:

 predictRUL

1-159

• Row vector whose first column contains the usage time. The remaining columns specify the
component covariate values only and not the life time values. The number of covariate values must
match the number and order of the covariate data columns used when estimating mdl using fit.

• table or timetable with one row. The table must contain the variables specified in the
LifeTimeVariable, DataVariables, and CensorVariable properties of mdl.

If the covariate data contains encoded variables, then you must specify covariates using a table
or timetable.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: Alpha,0.2 sets the prediction confidence interval to the 0.2/2 to 1-0.2/2 percentile
region.

Alpha — Confidence level
0.1 (default) | scalar value in the range 0 to 1

Confidence level for computing ciRUL, specified as the comma-separated pair consisting of 'Alpha'
and a scalar value in the range 0–1. predictRUL computes the confidence interval as the Alpha/2 to
1-Alpha/2 percentile region.

NumBins — Number of bins
200 (default) | positive integer

Number of bins used to evaluate pdfRUL, specified as the comma-separated pair consisting of
'NumBins' and a positive integer. This argument applies when mdl is a degradation model or
survival model.

BinSize — Bin size
1 (default) | positive scalar | duration object

Bin size used to determine the life span for computing pdfRUL, specified as the comma-separated
pair consisting of 'BinSize' and either a positive scalar or a duration object. This argument
applies when mdl is a degradation model or reliability survival model.

Method — Survival function conversion method
'empirical' (default) | 'weibull'

Survival function conversion method for generating the probability density function of a covariate
survival model, specified as the comma-separated pair consisting of 'Method' and one of the
following:

• 'empirical' — Generate pdfRUL by finding the gradient of the empirical cumulative
distribution function. The cumulative distribution function is 1-S(t), where S(t) is the survival
function.

• 'weibull' — Generate pdfRUL by fitting a Weibull distribution to the survival function.

For more information on survival functions, see covariateSurvivalModel.

1 Functions

1-160

Output Arguments
estRUL — Estimated remaining useful life
scalar

Estimated remaining useful life of a component, returned as a scalar. The returned value is in the
units of the life time variable as indicated by the LifeTimeUnit property of mdl.

ciRUL — Confidence interval
two-element row vector

Confidence interval associated with estRUL, returned as a two-element row vector. Specify the
percentile for the confidence interval using Alpha.

pdfRUL — RUL probability density function
timetable | table

RUL probability density function, returned as a timetable if the life time variable of mdl is time-
based, or as a table otherwise.

The life span used by predictRUL when computing the probability density function depends on the
type of RUL model you specify. If mdl is a:

• Degradation model, then the life span is [usageTime usageTime+BinSize*NumBins].
• Reliability survival model, then the life span is [T T+BinSize*NumBins], where T is the usage

time specified in usageTime.
• Covariate survival model, then the life span is linspace(T1,T2,NumBins), where [T1,T2] is

the life range of components as determined by the BaslineCumulativeHazard property of mdl.
• Similarity model, then the life span depends on the life spans of the nearest neighbors found by

the search algorithm. For example, if the NumNearestNeighbors property of mdl is 10 and the
10 nearest neighbors have life times in the range of 10 months to three years, then the histogram
of failure times is found across this range. predictRUL then fits a probability density function to
the raw histogram data using a kernel smoothing approach.

histRUL — Raw similarity scores
timetable | table

Raw similarity scores for histogram plotting, returned as a timetable if the life time variable of mdl
is time-based, or as a table otherwise. histRUL has the following variables:

• 'RUL' — Remaining useful life values of historical components used to fit the parameters of mdl.
• 'NormalizedDistanceScore' — Similarity scores obtained by comparing the test component

to the historical components used to fit the parameters of mdl.

The histogram of the data in histRUL is the unfitted version of pdfRUL. To plot the histogram, at the
MATLAB command line, type:

bar(histRUL.RUL,histRUL.NormalizedDistanceScore)

histRUL is returned when mdl is a hashSimilarityModel, pairwiseSimilarityModel, or
residualSimilarityModel object.

 predictRUL

1-161

Compatibility Considerations
currentValue syntax not recommended
Not recommended starting in R2018b

The following syntax is not recommended:

estRUL = predictRUL(mdl,currentValue,threshold)

For a trained degradation model mdl, this syntax estimates the remaining useful life (RUL) based on
the current measured value currentValue of a condition indicator. A more reliable way to estimate
RUL for degradation models is to update the model with each successive measurement of the
condition indicator using the update command. Then, use the updated model to estimate the RUL.

Update Code

Suppose that you store successive condition indicator measurements in an array TestData. The
array contains measurements at regular intervals at least up to the time currentTime for which
currentValue is the condition indicator measurement. To update your code, replace:

estRUL = predictRUL(mdl,currentValue,threshold)

with the following code:

for t = 1:CurrentTime
 update(mdl,TestData(t,:))
end
estRUL = predictRUL(mdl,threshold)

For an example, see “Predict RUL Using Exponential Degradation Model” on page 1-153.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• This command supports code generation with MATLAB Coder™ for RUL prediction using
linearDegradationModel or exponentialDegradationModel.

• Before generating code from a function that uses predictRUL, you must save the RUL model
using saveRULModelForCoder. For an example, see “Generate Code for Predicting Remaining
Useful Life”.

See Also
fit | update

Topics
“Update RUL Prediction as Data Arrives”
“RUL Estimation Using RUL Estimator Models”

Introduced in R2018a

1 Functions

1-162

prognosability
Measure of variability of condition indicators at failure

Syntax
Y = prognosability(X)
Y = prognosability(X,lifetimeVar)
Y = prognosability(X,lifetimeVar,dataVar)
Y = prognosability(X,lifetimeVar,dataVar,memberVar)
Y = prognosability(___ ,Name,Value)

prognosability(___)

Description
Y = prognosability(X) returns the prognosability of the lifetime data X. Use prognosability
as a measure of the variability of a feature at failure based on the trajectories of the feature
measured in several run-to-failure experiments. A more prognosable feature has less variation at
failure relative to the range between its initial and final values. The values of Y range from 0 to 1,
where Y is 1 if X is perfectly prognosable and 0 if X is non-prognosable.

Y = prognosability(X,lifetimeVar) returns the prognosability of the lifetime data X using the
lifetime variable lifetimeVar.

Y = prognosability(X,lifetimeVar,dataVar) returns the prognosability of the lifetime data
X using the data variables specified by dataVar.

Y = prognosability(X,lifetimeVar,dataVar,memberVar) returns the prognosability of the
lifetime data X using the lifetime variable lifetimeVar, the data variables specified by dataVar,
and the member variable memberVar.

Y = prognosability(___ ,Name,Value) estimates the prognosability with additional options
specified by one or more Name,Value pair arguments. You can use this syntax with any of the
previous input-argument combinations.

prognosability(___) with no output arguments plots a bar chart of ranked prognosability
values.

Examples

Prognosability of Data in Cell Array of Matrices

In this example, consider the lifetime data of 10 identical machines with the following 6 potential
condition indicators−constant, linear, quadratic, cubic, logarithmic, and periodic. The data set
machineDataCellArray.mat contains C which is a 1x10 cell array of matrices where each element
of the cell array is a matrix that contains the lifetime data of a machine. For each matrix in the cell
array, the first column contains the time while the other columns contain the data variables.

Load the lifetime data and visualize it against time.

 prognosability

1-163

load('machineDataCellArray.mat','C')
display(C)

C=1×10 cell array
 Columns 1 through 4

 {219x7 double} {189x7 double} {202x7 double} {199x7 double}

 Columns 5 through 8

 {229x7 double} {184x7 double} {224x7 double} {208x7 double}

 Columns 9 through 10

 {181x7 double} {197x7 double}

for k = 1:length(C)
 plot(C{k}(:,1), C{k}(:,2:end));
 hold on;
end

Observe the 6 different condition indicators–constant, linear, quadratic, cubic, logarithmic, and
periodic–for all 10 machines on the plot.

Visualize the prognosability of the potential condition indicators.

prognosability(C)

1 Functions

1-164

From the histogram plot, observe that the features Var2, Var4 and Var5 rank better than the
others. Hence, these features are more appropriate for remaining useful life predictions since they
are the best indicators of machine health.

Prognosability of Data in Cell Array of Tables

In this example, consider the lifetime data of 10 identical machines with the following 6 potential
condition indicators−constant, linear, quadratic, cubic, logarithmic, and periodic. The data set
machineDataTable.mat contains T, which is a 1x10 cell array of tables where each element of the
cell array contains a table of lifetime data for a machine.

Load and display the data.

load('machineDataTable.mat','T');
display(T)

T=1×10 cell array
 Columns 1 through 4

 {219x7 table} {189x7 table} {202x7 table} {199x7 table}

 Columns 5 through 8

 {229x7 table} {184x7 table} {224x7 table} {208x7 table}

 prognosability

1-165

 Columns 9 through 10

 {181x7 table} {197x7 table}

head(T{1},2)

ans=2×7 table
 Time Constant Linear Quadratic Cubic Logarithmic Periodic
 ____ ________ ______ _________ ______ ___________ ________

 0 3.2029 11.203 7.7029 3.8829 2.2517 0.2029
 0.05 2.8135 10.763 7.2637 3.6006 1.8579 0.12251

Note that every table in the cell array contains the lifetime variable 'Time' and the data variables
'Constant', 'Linear', 'Quadratic', 'Cubic', 'Logarithmic', and 'Periodic'.

Compute prognosability with Time as the lifetime variable.

Y = prognosability(T,'Time')

Y=1×6 table
 Constant Linear Quadratic Cubic Logarithmic Periodic
 ________ _______ _________ _______ ___________ ________

 0.56697 0.92321 0.28044 0.85048 0.96475 0.33853

From the resultant table of prognosability values, observe that the linear, cubic, and logarithmic
features have values closer to 1. Hence, these three features are more appropriate for predicting
remaining useful life since they are the best indicators of machine health.

Visualize Prognosability of Lifetime Data in Ensemble Datastore

Consider the lifetime data of 4 machines. Each machine has 4 fault codes for the potential condition
indicators−voltage, current, and power. prognosabilityEnsemble.zip is a collection of 4 files
where every file contains a timetable of lifetime data for each machine - tbl1.mat, tbl2.mat,
tbl3.mat and tbl4.mat. You can also use files containing data for multiple machines. For each
timetable, the organization of the data is as follows:

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session, change the global execution environment by using the mapreducer function.

mapreducer(0)

Extract the compressed files, read the data in the timetables, and create a
fileEnsembleDatastore object using the timetable data. For more information on creating a file
ensemble datastore, see fileEnsembleDatastore.

1 Functions

1-166

unzip prognosabilityEnsemble.zip;
ens = fileEnsembleDatastore(pwd,'.mat');
ens.DataVariables = {'Voltage','Current','Power','FaultCode','Machine'};
% Make sure that the function for reading data is on path
addpath(fullfile(matlabroot,'examples','predmaint','main'))
ens.ReadFcn = @readtable_data;
ens.SelectedVariables = {'Voltage','Current','Power','FaultCode','Machine'};

Visualize the prognosability of the potential condition indicators with 'Machine' as the member
variable and group the lifetime data by 'FaultCode'. Grouping the lifetime data ensures that
prognosability calculates the metric for each fault code separately.

prognosability(ens,'MemberVariable','Machine','GroupBy','FaultCode');

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.13 sec
Evaluation completed in 0.31 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.057 sec
Evaluation completed in 0.16 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.18 sec
Evaluation completed in 0.21 sec

prognosability returns a histogram plot with the features ranked by their prognosability values. A
higher prognosability value indicates a more suitable condition indicator. For instance, the candidate
feature Current has the highest degree of prognosability for machines with FaultCode 1.

 prognosability

1-167

rmpath(fullfile(matlabroot,'examples','predmaint','main')) % Reset path

Input Arguments
X — Lifetime data
cell array of matrices | cell array of tables and timetables | fileEnsembleDatastore object | table |
timetable

Lifetime data, specified as a cell array of matrices, cell array of tables and timetables,
fileEnsembleDatastore object, table, or timetable. Lifetime data contains run-to-failure data of
the systems being monitored. The term lifetime here refers to the life of the machine defined in terms
of the units you use to measure system life. Units of lifetime can be quantities such as the distance
traveled (miles), fuel consumed (gallons), or time since the start of operation (days).

If X is

• a cell array of matrices or tables, the function assumes that each matrix or table contains columns
of lifetime data for a system. Each column of every matrix or table, except the first column,
contains data for a prognostic variable. 'Var1','Var2', ... can be used to refer to the matrix
columns that contain the lifetime data. For instance, the file machineDataCellArray.mat
contains a 1-by-10 cell array of matrices C, where each of the 10 matrices contains data for a
particular machine.

• a table or timetable, the function assumes that each column, except the first one, contains
columns of lifetime data. The table variable names can be used to refer to the columns that
contain the lifetime data. If lifetimeVar is not specified when X is a table, then the first data
column is used as the lifetime variable.

• a fileEnsembleDatastore object, specify the data variables dataVar and member variables
memberVar to be used. If lifetimeVar is not specified, then the first data column is used as the
lifetime variable for computation.

Each numerical member in X is of type double.

lifetimeVar — Lifetime variable
string | character vector

Lifetime variable, specified as a string or character vector. lifetimeVar measures the lifetime of
the systems being monitored and the lifetime data is sorted with respect to lifetimeVar. The value
of lifetimeVar must be a valid ensemble or table variable name.

For a cell array of matrices, the value 'Time' can be used to refer to the first column of each matrix,
which is assumed to contain the lifetime variable. For instance, the file
machineDataCellArray.mat contains the cell array C, where the first column in each matrix
contains the lifetime variable while the other columns contain the data variables.

dataVar — Data variables
string array | character vector | cell array of character vectors

Data variables, specified as a string array, character vector, or cell array of character vectors. Data
variables are the main content of the members of an ensemble. Data variables can include measured
data or derived data for the analysis and development of predictive maintenance algorithms.

If X is

1 Functions

1-168

• a fileEnsembleDatastore object, the value of dataVar supersedes the DataVariables
property of the ensemble.

• a cell array of matrices, the value 'Time' can be used to refer to the first column of each matrix,
that is, the lifetime variable lifetimeVar. 'Var1','Var2', ... can be used to refer to the
other matrix columns which contain the lifetime data. For instance, the file
machineDataCellArray.mat contains the cell array C where the first column in each matrix
contains the lifetime variable. The other columns in the cell array C contain the data variables.

• a table, the table variable names can be used to refer to the columns which contain the lifetime
data.

The values of dataVar must be valid ensemble or table variable names. If dataVar is not specified,
the computation includes all data columns except the one specified in lifetimeVar. For instance,
suppose that each entry in a cell array is a table with variables A, B, C, and D. Setting dataVar to
["A","D"] uses only A and D for the computation while C and D are ignored.

memberVar — Member variable
string | character vector

Member variable, specified as a string or character vector. Use memberVar to specify the variable for
identifying the systems or machines in lifetime data X. For instance, in the
fileEnsembleDatastore object, the fifth column in each timetable contains numbers that identify
data from a particular machine. The column name corresponds to the member variable memberVar.

memberVar is ignored when X is specified as a cell array of matrices or tables.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ...,'WindowSize',0

LifeTimeVariable — Lifetime variable
strings(0) (default) | string | character vector

Lifetime variable, specified as the comma-separated pair consisting of 'LifeTimeVariable' and
either a string or character vector. If 'LifeTimeVariable' is not specified, then the first data
column is used.

'LifeTimeVariable' is equivalent to the input argument lifetimeVar.

DataVariables — Data variables
strings(0) (default) | string array | character vector | cell array of character vectors

Data variables, specified as the comma-separated pair consisting of 'DataVariables' and either a
string array, character vector or cell array of character vectors.

'DataVariables' is equivalent to the input argument dataVar.

MemberVariable — Member variables
[] (default) | string | character vector

Member variables, specified as the comma-separated pair consisting of 'MemberVariable' and either
a string or character vector.

 prognosability

1-169

'MemberVariable' is equivalent to the input argument memberVar.

GroupBy — Grouping criterion
[] (default) | string | character vector

Grouping criterion, specified as the comma-separated pair consisting of 'GroupBy' and either a string
or character vector. Use 'GroupBy' to specify the variables for grouping the lifetime data X by
operating conditions.

The function computes the metric separately for each group that results from applying the criterion,
such as a fault condition, specified by 'GroupBy'. For instance, in the fileEnsembleDatastore
object ens, the fourth column in each timetable in ens contains the variable 'FaultCode'. The
metric is computed for each machine by grouping the data by 'FaultCode'.

You can only group variables when X is defined as a fileEnsembleDatastore object, table,
timetable, or cell array of tables or timetables.

Output Arguments
Y — Prognosability of lifetime data
vector | table

Prognosability of lifetime data, returned as a vector or table.

Prognosability is the measure of the variability of a feature at failure based on the trajectories of the
feature measured in several run-to-failure experiments. A more prognosable feature has less variation
at failure relative to the range between its initial and final values. As a system gets progressively
closer to failure, a suitable condition indicator is typically highly prognosable. Conversely, any feature
that is non-prognosable is a less suitable condition indicator. The values of Y range from 0 to 1.

• Y is 1 if X is perfectly prognosable.
• Y is 0 if X is perfectly non-prognosable.

Selecting appropriate estimation parameters out of all available features is the first step in building a
reliable remaining useful life prediction engine. The prognosability values in Y are useful to
determine which condition indicators best track the degradation process of systems being monitored.
The higher the prognosability, the more desirable the feature is for RUL prediction.

When 'GroupBy' is not specified, then Y is returned as a row vector or single-row table. Conversely,
when 'GroupBy' is specified, then each row in Y corresponds to one group.

Limitations
• When X is a tall table or tall timetable, prognosability nevertheless loads the complete array

into memory using gather. If the memory available is inadequate, then prognosability returns
an error.

Algorithms
The computation of prognosability uses this formula:

prognosability = exp −
std j x j N j

mean j x j 1 − x j N j
, j = 1, ..., M

1 Functions

1-170

where xj represents the vector of measurements of a feature on the jth system, variable M is the
number of systems monitored, and Nj is the number of measurements on the jth system.

References
[1] Coble, J., and J. W. Hines. "Identifying Optimal Prognostic Parameters from Data: A Genetic

Algorithms Approach." In Proceedings of the Annual Conference of the Prognostics and
Health Management Society. 2009.

[2] Coble, J. "Merging Data Sources to Predict Remaining Useful Life - An Automated Method to
Identify Prognostics Parameters." Ph.D. Thesis. University of Tennessee, Knoxville, TN, 2010.

[3] Lei, Y. Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery.
Xi'an, China: Xi'an Jiaotong University Press, 2017.

[4] Lofti, S., J. B. Ali, E. Bechhoefer, and M. Benbouzid. "Wind turbine high-speed shaft bearings
health prognosis through a spectral Kurtosis-derived indices and SVR." Applied Acoustics Vol.
120, 2017, pp. 1-8.

See Also
fileEnsembleDatastore | monotonicity | trendability

Topics
“Feature Selection for Remaining Useful Life Prediction”

Introduced in R2018b

 prognosability

1-171

read
Read member data from an ensemble datastore

Syntax
data = read(ensemble)
[data,info] = read(ensemble)

Description
Use this function to read data from ensemble datastores for condition monitoring and predictive
maintenance.

data = read(ensemble) reads data from a member of the ensemble datastore ensemble. The
function reads the variables specified in the SelectedVariables property of the ensemble
datastore and returns them in a table.

If the ensemble has not been read since its creation (or since it was last reset using reset), then
read reads data from the first member of the ensemble, as determined by the software. Otherwise,
read reads data from the next ensemble member. read updates the LastMemberRead property of
the ensemble to identify the most recently read member. For more information about how ensemble
datastores work, see “Data Ensembles for Condition Monitoring and Predictive Maintenance”.

[data,info] = read(ensemble) also returns information about the location from which the data
is read and the size of the data.

Examples

Extract Subset of Stored Variables from Ensemble Member

In general, you use the read command to extract data from a simulationEnsembleDatastore
object into the MATLAB® workspace. Often, your ensemble contains more variables than you need to
use for a particular analysis. Use the SelectedVariables property of the
simulationEnsembleDatastore object to select a subset of variables for reading.

For this example, use the following code to create a simulationEnsembleDatastore object using
data previously generated by running a Simulink® model at a various fault values (See
generateSimulationEnsemble.). The ensemble includes simulation data for five different values of
a model parameter, ToothFaultGain. Because of the volume of data, the unzip operation takes a
few minutes.

unzip simEnsData.zip % extract compressed files
ensemble = simulationEnsembleDatastore(pwd,'logsout')

ensemble =
 simulationEnsembleDatastore with properties:

 DataVariables: [5x1 string]
 IndependentVariables: [0x0 string]

1 Functions

1-172

 ConditionVariables: [0x0 string]
 SelectedVariables: [5x1 string]
 ReadSize: 1
 NumMembers: 5
 LastMemberRead: [0x0 string]
 Files: [5x1 string]

The model that generated the data, TransmissionCasingSimplified, was configured such that
the resulting ensemble contains variables including accelerometer data, Vibration, and tachometer
data, Tacho. By default, the simulationEnsembleDatastore object designates all these variables
as both data variables and selected variables, as shown in the DataVariables and
SelectedVariables properties.

ensemble.DataVariables

ans = 5x1 string
 "PMSignalLogName"
 "SimulationInput"
 "SimulationMetadata"
 "Tacho"
 "Vibration"

ensemble.SelectedVariables

ans = 5x1 string
 "PMSignalLogName"
 "SimulationInput"
 "SimulationMetadata"
 "Tacho"
 "Vibration"

Suppose that for the analysis you want to do, you need only the Vibration data and the
Simulink.SimulationInput object that describes the conditions under which this member data
was simulated. Set ensemble.SelectedVariables to specify the variables you want to read. The
read command then extracts those variables from the current ensemble member.

ensemble.SelectedVariables = ["Vibration";"SimulationInput"];
data1 = read(ensemble)

data1=1×2 table
 Vibration SimulationInput
 ___________________ ______________________________

 {20202x1 timetable} {1x1 Simulink.SimulationInput}

data.Vibration is a cell array containing one timetable that stores the simulation times and the
corresponding vibration signal. You can now process this data as needed. For instance, extract the
vibration data from the table and plot it.

vibdata1 = data1.Vibration{1};
plot(vibdata1.Time,vibdata1.Data)
title('Vibration - First Ensemble Member')

 read

1-173

The next time you call read on this ensemble, the last-read member designation advances to the next
member of the ensemble (see “Data Ensembles for Condition Monitoring and Predictive
Maintenance”). Read the selected variables from the next member of the ensemble.

data2 = read(ensemble)

data2=1×2 table
 Vibration SimulationInput
 ___________________ ______________________________

 {20215x1 timetable} {1x1 Simulink.SimulationInput}

To confirm that data1 and data2 contain data from different ensemble members, examine the values
of the varied model parameter, ToothFaultGain. For each ensemble, this value is stored in the
Variables field of the SimulationInput variable.

data1.SimulationInput{1}.Variables

ans =
 Variable with properties:

 Name: 'ToothFaultGain'
 Value: -2
 Workspace: 'global-workspace'
 Description: ""

1 Functions

1-174

data2.SimulationInput{1}.Variables

ans =
 Variable with properties:

 Name: 'ToothFaultGain'
 Value: -1.5000
 Workspace: 'global-workspace'
 Description: ""

This result confirms that data1 is from the ensemble member with ToothFaultGain = –2, and
data2 is from the member with ToothFaultGain = –1.5.

Read from and Write to a File Ensemble Datastore

Create a file ensemble datastore for data stored in MATLAB files, and configure it with functions that
tell the software how to read from and write to the datastore. (For more details about configuring file
ensemble datastores, see “File Ensemble Datastore With Measured Data”.)

% Create ensemble datastore that points to datafiles in current folder
unzip fileEnsData.zip % extract compressed files
location = pwd;
extension = '.mat';
fensemble = fileEnsembleDatastore(location,extension);

% Specify data and condition variables
fensemble.DataVariables = ["gs";"sr";"load";"rate"];
fensemble.ConditionVariables = "label";

% Configure with functions for reading and writing variable data
addpath(fullfile(matlabroot,'examples','predmaint','main')) % Make sure functions are on path
fensemble.ReadFcn = @readBearingData;
fensemble.WriteToMemberFcn = @writeBearingData;

The functions tell the read and writeToLastMemberRead commands how to interact with the data
files that make up the ensemble. Thus, when you call the read command, it uses readBearingData
to read all the variables in fensemble.SelectedVariables. For this example, readBearingData
extracts requested variables from a structure, bearing, and other variables stored in the file. It also
parses the filename for the fault status of the data.

Specify variables to read, and read them from the first member of the ensemble.

fensemble.SelectedVariables = ["gs";"load";"label"];
data = read(fensemble)

data=1×3 table
 label gs load
 ________ _______________ ____

 "Faulty" {5000x1 double} 0

You can now process the data from the member as needed. For this example, compute the average
value of the signal stored in the variable gs. Extract the data from the table returned by read.

 read

1-175

gsdata = data.gs{1};
gsmean = mean(gsdata);

You can write the mean value gsmean back to the data file as a new variable. To do so, first expand
the list of data variables in the ensemble to include a variable for the new value. Call the new variable
gsMean.

fensemble.DataVariables = [fensemble.DataVariables;"gsMean"]

fensemble =
 fileEnsembleDatastore with properties:

 ReadFcn: @readBearingData
 WriteToMemberFcn: @writeBearingData
 DataVariables: [5x1 string]
 IndependentVariables: [0x0 string]
 ConditionVariables: "label"
 SelectedVariables: [3x1 string]
 ReadSize: 1
 NumMembers: 5
 LastMemberRead: "C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\25\tp42ac2ec4\predmaint-ex34165887\FaultData_01.mat"
 Files: [5x1 string]

Next, write the derived mean value to the file corresponding to the last-read ensemble member. (See
“Data Ensembles for Condition Monitoring and Predictive Maintenance”.) When you call
writeToLastMemberRead, it converts the data to a structure and calls
fensemble.WriteToMemberFcn to write the data to the file.

writeToLastMemberRead(fensemble,'gsMean',gsmean);

Calling read again advances the last-read-member indicator to the next file in the ensemble and
reads the data from that file.

data = read(fensemble)

data=1×3 table
 label gs load
 ________ _______________ ____

 "Faulty" {5000x1 double} 50

You can confirm that this data is from a different member by examining the load variable in the
table. Here, its value is 50, while in the previously read member, it was 0.

You can repeat the processing steps to compute and append the mean for this ensemble member. In
practice, it is more useful to automate the process of reading, processing, and writing data. To do so,
reset the ensemble to a state in which no data has been read. Then loop through the ensemble and
perform the read, process, and write steps for each member.

reset(fensemble)
while hasdata(fensemble)
 data = read(fensemble);
 gsdata = data.gs{1};
 gsmean = mean(gsdata);
 writeToLastMemberRead(fensemble,'gsMean',gsmean);
end

1 Functions

1-176

The hasdata command returns false when every member of the ensemble has been read. Now,
each data file in the ensemble includes the gsMean variable derived from the data gs in that file. You
can use techniques like this loop to extract and process data from your ensemble files as you develop
a predictive-maintenance algorithm. For an example illustrating in more detail the use of a file
ensemble datastore in the algorithm-development process, see “Rolling Element Bearing Fault
Diagnosis”. The example also shows how to use Parallel Computing Toolbox™ to speed up the
processing of large data ensembles.

To confirm that the derived variable is present in the file ensemble datastore, read it from the first
and second ensemble members. To do so, reset the ensemble again, and add the new variable to the
selected variables. In practice, after you have computed derived values, it can be useful to read only
those values without rereading the unprocessed data, which can take significant space in memory.
For this example, read selected variables that include the new variable, gsMean, but do not include
the unprocessed data, gs.

reset(fensemble)
fensemble.SelectedVariables = ["label";"load";"gsMean"];
data1 = read(fensemble)

data1=1×3 table
 label load gsMean
 ________ ____ ________

 "Faulty" 0 -0.22648

data2 = read(fensemble)

data2=1×3 table
 label load gsMean
 ________ ____ ________

 "Faulty" 50 -0.22937

rmpath(fullfile(matlabroot,'examples','predmaint','main')) % Reset path

Read Multiple Ensemble Members in One Operation

To read data from multiple ensemble members in one call to the read command, use the ReadSize
property of an ensemble datastore. This example uses simulationEnsembleDatastore, but you
can use the same technique for fileEnsembleDatastore.

Use the following code to create a simulationEnsembleDatastore object using data previously
generated by running a Simulink model at a various fault values (see
generateSimulationEnsemble). The ensemble includes simulation data for five different values of
a model parameter, ToothFaultGain. (Because of the volume of data, the unzip operation might
take a minute or two.) Specify some of the data variables to read.

unzip simEnsData.zip % extract compressed files
ensemble = simulationEnsembleDatastore(pwd,'logsout');
ensemble.SelectedVariables = ["Vibration";"SimulationInput"];

 read

1-177

By default, calling read on this ensemble datastore returns a single-row table containing the values
of the Vibration and SimulationInput variables for the first ensemble member. Change the
ReadSize property to read three members at once.

ensemble.ReadSize = 3;
data1 = read(ensemble)

data1=3×2 table
 Vibration SimulationInput
 ___________________ ______________________________

 {20202x1 timetable} {1x1 Simulink.SimulationInput}
 {20215x1 timetable} {1x1 Simulink.SimulationInput}
 {20204x1 timetable} {1x1 Simulink.SimulationInput}

read returns a three-row table, where each row contains data from one of the first, second, and third
ensemble members. read also updates the LastReadMember property of the ensemble datastore to a
string array containing the paths of the three corresponding files. Avoid setting ReadSize to a value
so large as to risk running out of memory while loading the data.

If the ensemble contains three or more additional members, the next read operation returns data
from the fourth, fifth, and sixth members. Because the ensemble of this example contains only five
members total, the next read operation returns only two rows.

data2 = read(ensemble)

data2=2×2 table
 Vibration SimulationInput
 ___________________ ______________________________

 {20213x1 timetable} {1x1 Simulink.SimulationInput}
 {20224x1 timetable} {1x1 Simulink.SimulationInput}

Input Arguments
ensemble — Ensemble datastore
fileEnsembleDatastore object | simulationEnsembleDatastore object

Ensemble datastore to read, specified as a:

• simulationEnsembleDatastore object — read reads the next ensemble member.
• fileEnsembleDatastore object — read uses the function specified in the ensemble.ReadFcn

property to read the next ensemble member. (For more information about working with file
ensemble datastores, see fileEnsembleDatastore.)

In either case, read returns a table containing all the variables specified in
ensemble.SelectedVariables.

Output Arguments
data — Selected variables from ensemble member
table

1 Functions

1-178

Selected variables from the ensemble member, returned as a table. The table variables are the
selected variables, and the table data are the values read from the ensemble data. By default, read
reads one ensemble member at a time and returns a single table row.

To read multiple ensemble members at one time, set the ReadSize property of ensemble to a value
greater than 1. For instance, if you set ReadSize to 3, then read reads the next 3 ensemble
members and returns a table with 3 rows. If fewer than ReadSize members are unread, then read
returns a table with as many rows as there are remaining members. For an example, see “Read
Multiple Ensemble Members in One Operation” on page 1-177. Avoid setting ReadSize to such a
large value as to risk running out of memory while loading data.

info — Data and member information
structure

Data and ensemble member information, returned as a structure with fields:

• Size — Dimensions of the table data, returned as a vector. For instance, if your ensemble has
four variables specified in ensemble.SelectedVariables, then Info.Size = [1 4].

• FileName — Path to the data file corresponding to the accessed ensemble member, returned as a
string. For example, "C:\Data\Experiment1\fault1.mat". Calling read also sets the
LastMemberRead property of the ensemble to this value. If the ReadSize property of ensemble
is greater than 1, this value is a string vector containing the paths to all the accessed files.

See Also
fileEnsembleDatastore | simulationEnsembleDatastore

Topics
“Data Ensembles for Condition Monitoring and Predictive Maintenance”

Introduced in R2018a

 read

1-179

readFeatureTable
Read feature values, independent variables, and condition variables from an ensemble data set into a
table

Syntax
ft = readFeatureTable(ensemble)
ft = readFeatureTable(ensemble,framepolid)
ft = readFeatureTable(___ ,Name,Value)

Description
readFeatureTable is a function used in code generated by Diagnostic Feature Designer.

ft = readFeatureTable(ensemble) extracts a feature table ft from ensemble ensemble for all
features computed in full-signal mode. The feature table contains features, independent variables,
and condition variables, and is the primary output of code generated by Diagnostic Feature
Designer.

ft = readFeatureTable(ensemble,framepolid) uses the frame size and frame rate defined in
FramePolicyID to read each frame interval when the function constructs the feature table. This
syntax applies to frame-based—also known as segmented—signal and feature computation.

ft = readFeatureTable(___ ,Name,Value) specifies the features and variables to read using
one or more name-value pair arguments. For instance, if you use ft =
readFeatureTable(ensemble,'ConditionVariables','FaultCode'), ft contains only the
'FaultCode' condition variable but still includes all features and independent variables. You can
use this syntax with any of the input argument combinations in previous syntaxes.

Input Arguments
ensemble — Ensemble of member data
workspaceEnsemble object | fileEnsembleDatastore object |
simulationEnsembleDatastore object

Ensemble of member data, specified as a fileEnsembleDatastore object, a
simulationEnsembleDatastore object, or a workspaceEnsemble object.

framepolid — Frame policy ID
string

Frame policy ID, specified as a string formatted as FRM_<frame policy index>. In code generated by
Diagnostic Feature Designer, the frame policy reflects the choice of frame size and frame rate in
segmented data.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

1 Functions

1-180

Example: 'ConditionVariables','FaultCode'

Features — Features to read
string array

Features to read, specified as the comma-separated pair consisting of 'Features' and a string array
of paths that point to the selected features. If you do not specify 'Features', the function reads all
the features.

IndependentVariables — Independent variables to read
string array

Independent variables to read, specified as the comma-separated pair consisting of
'IndependentVariables' and a string array of paths that point to the selected variables. If you do
not specify 'IndependentVariables', the function reads all the independent variables.

ConditionVariables — Condition variables to read
string array

Condition variables to read, specified as the comma-separated pair consisting of
'ConditionVariables' and a string array of paths that point to the selected variables. If you do
not specify 'ConditionVariables', the function reads all the condition variables.

IncludeMemberID — Option to return member IDs
false (default) | true

Option to return ensemble member IDs, specified as the comma-separated pair consisting of
'IncludeMemberID' and a logical scalar. When you set 'IncludeMemberID' to true, the feature
table ft includes a column of member IDs.

Output Arguments
ft — Feature table
table

Feature table, specified as a table. The table contains features, independent variables, and condition
variables for each member. The features and condition variables are scalars. The independent
variables are timetables, tables, or cell arrays.

See Also
Diagnostic Feature Designer

Topics
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”

Introduced in R2020a

 readFeatureTable

1-181

readFrameIntervals
Extract frame segments from an ensemble member

Syntax
frames = readFrameIntervals(memberdata)
frames = readFrameIntervals(memberdata,framepolid)

Description
readframeIntervals is a function used in code generated by Diagnostic Feature Designer.

frames = readFrameIntervals(memberdata) extracts the start and stop times for each frame
into a table for the first frame policy in a set of frame policies. A frame policy specifies the frame size
and frame rate, and enables frame-based rather than full-signal signal processing and feature
extraction.

Code that is generated by Diagnostic Feature Designer uses readFrameIntervals when it
processes inputs with both full and framed signals, such as when the code includes ensemble
statistics processing and frame-based signal and feature processing.

frames = readFrameIntervals(memberdata,framepolid) extracts the frame segments using
the specified frame policy ID. For instance,
readFrameIntervals(ensembleStatistics,"FRM_2") extracts the intervals using the second
frame policy.

Input Arguments
memberdata — Member data set
table row | cell array row

Member data set, specified as a row within an ensemble data set.

framepolid — Frame policy ID
string

Frame policy ID, specified as a string formatted as FRM_<frame policy index>. For instance,
"FRM_2".

Output Arguments
frames — Frame start and stop times
table

Frame start and stop times, specified as an nf-by-2 table, where nf is the number of frames in the
signal.

See Also
Diagnostic Feature Designer | frameintervals | joindata

1 Functions

1-182

Topics
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”

Introduced in R2020a

 readFrameIntervals

1-183

readMember
Return ensemble member data based on the member index

Syntax
data = readMember(wensemble,index)

Description
readMember is a function used in code generated by Diagnostic Feature Designer.

data = readMember(wensemble,index) reads the workspace ensemble wensemble member
identified by index and returns member data in data. readMember reads only variables that the
'SelectedVariables' property of wensemble specifies.

Code that is generated by Diagnostic Feature Designer uses writeMember, readMember, and
findIndex under the following conditions:

• The input data is an ensemble datastore, such as a file or simulation ensemble datastore.
• The computation option during code generation specified storing results in local memory rather

than writing results back to the ensemble datastore.

Explicitly specifying a member index when reading and writing within the local version of the data,
which the code manages using a workspaceEnsemble object, ensures member synchronization with
the original ensemble datastore. This synchronization is necessary when you have sequential
member-processing loops, such as when you compute ensemble statistics as a precursor to
computing signal residues.

• During the first member-processing loop, which starts with an empty ensemble, no indexing is
needed. The code appends each new member result to the end of the ensemble.

• During the second loop, the index enables the code to write updated member results to the
correct location within the now-populated ensemble.

For more information about the dual processing loop for ensemble statistics, see “Anatomy of App-
Generated MATLAB Code”.

Input Arguments
wensemble — Ensemble object
workspaceEnsemble object

Ensemble object, specified as a workspaceEnsemble object. wensemble contains ensemble data
and specifies the variable names and types within the ensemble, such as data variables and condition
variables.

index — Member index
positive integer

Member index, specified as a positive integer. index identifies the ensemble member to read new
data from.

1 Functions

1-184

Output Arguments
data — Member data
single-row table

Member data that readMember extracts, returned as a single-row table.

See Also
Diagnostic Feature Designer | fileEnsembleDatastore | findIndex |
simulationEnsembleDatastore | workspaceEnsemble | writeMember

Topics
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”

Introduced in R2020a

 readMember

1-185

readMemberData
Extract data from an ensemble member given a path

Syntax
data = readMemberData(memberdata,path)
data = readMemberData(memberdata,path,variablenames)
data = readMemberData(___ ,'FrameInterval',interval)

Description
readMemberData is a function used in code generated by Diagnostic Feature Designer.

data = readMemberData(memberdata,path) reads the value under the path path from member
data memberdata.

Code that is generated by Diagnostic Feature Designer uses readMemberData when performing
member-level processing.

data = readMemberData(memberdata,path,variablenames) reads the values of the variable
names in variablenames. For example, Vibration = readMemberData(member,"Vibration",
["Time","Data"]) reads the Vibration variables Time and Data from the current member row.

data = readMemberData(___ ,'FrameInterval',interval) reads the values contained
within a frame interval that is specified by the frame start and stop times. Use this syntax when path
starts with FRM, which indicates that the data to be read is segmented into frames. You can use this
syntax with any of the input argument combinations in previous syntaxes.

Input Arguments
memberdata — Member data set
table

Member data set, specified as a table. memberdata represents one ensemble member read from a
multimember ensemble data set.

path — path name
scalar string | character array

Path, specified as a scalar string or a character array that represents the highest level variable name.
For example, "Vibration" is a path that might contain the lower level variable names time and
data.

variablenames — Variable names
scalar string | character array | string array | cell array of character arrays

Variable names under a path, specified as a scalar string, a character array, a string array, or a cell
array of character arrays. For example, ["Time","Data"] might be variable names under the path
"Vibration".

1 Functions

1-186

interval — Frame start and stop times
two-element array

Frame start and stop times, specified as an array with two elements. When reading frame-based data,
interval identifies a specific frame within the frame sequence. For example, if the full signal ranges
from 0 to 20 seconds, and the frame size and frame rate specifications are each one second, the first
interval is approximately [0 1].

Output Arguments
data — Member data values
table

Member data values extracted from the member data, returned as a table. data contains the same
column names as variablenames if variablenames is a string array or a cell array of character
arrays.

See Also
Diagnostic Feature Designer

Topics
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”

Introduced in R2020a

 readMemberData

1-187

readState
Get RUL model state for use at runtime

Syntax
mdlState = readState(mdl)

Description
mdlState = readState(mdl) returns a structure containing the properties of the RUL model mdl.
Use readState in an entry-point function for code generation to preserve the values of model
parameters, particularly when you update the model at run time. For more information, see
“Generate Code that Preserves RUL Model State for System Restart”.

Input Arguments
mdl — RUL model
linearDegradationModel | exponentialDegradationModel

RUL model, specified as a linearDegradationModel or exponentialDegradationModel RUL
model object. readState creates a structure that contains the current property values of mdl.

Output Arguments
mdlState — Model state
structure

Model state, returned as a structure. The fields of mdlState correspond to the properties of mdl,
with an extra field that specifies the type of RUL model.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
restoreState | saveRULModelForCoder

Topics
“Generate Code that Preserves RUL Model State for System Restart”

Introduced in R2021a

1 Functions

1-188

Reconstruct Phase Space
Reconstruct phase space of a uniformly sampled signal in the Live Editor

Description
The Reconstruct Phase Space task lets you interactively reconstruct phase space of a uniformly
sampled signal. The task automatically generates MATLAB code for your live script. For more
information about Live Editor tasks generally, see “Add Interactive Tasks to a Live Script”.

Phase space reconstruction is useful to verify the system order and reconstruct all dynamic system
variables, while preserving system properties. Reconstructing the phase space is performed when
limited data is available, or when the phase space dimension and lag values are unknown. Also, the
nonlinear features approximateEntropy, correlationDimension, and lyapunovExponent use
phase space reconstruction as the first step of the computation. For more information about phase
space reconstruction, see phaseSpaceReconstruction.

 Reconstruct Phase Space

1-189

Open the Task
To add the Reconstruct Phase Space task to a live script in the MATLAB Editor:

• On the Live Editor tab, select Task > Reconstruct Phase Space.
• In a code block in your script, type a relevant keyword, such as phase or phase space. Select

Reconstruct Phase Space from the suggested command completions.

Examples

1 Functions

1-190

Reconstruct Phase Space in the Live Editor

Use the Reconstruct Phase Space task in the Live Editor to interactively reconstruct the phase
space of a uniformly sampled signal. Experiment with different values for lag, embedding dimension,
histogram bins and distance threshold. The task automatically generates code reflecting your
selections. Open this example to see a preconfigured script containing the Reconstruct Phase
Space task.

For this example, consider 'uavPositionData.mat' which contains signal xv which is the x-
component of a 3-D path traversed by an unmanned aerial vehicle (UAV). The x, y, and z coordinates
define a circle of 2-m radius at 0.75-m altitude.

load('uavPositionData.mat','xv')

To reconstruct the phase space of the signal xv, open the Reconstruct Phase Space task in the Live
Editor. On the Live Editor tab, select Task > Reconstruct Phase Space. In the task, select signal
xv.

Clear the Time Lag check box if you want to use your own values in the Maximum Lag and
Histogram Bins fields. For this example, leave the box checked to calculate the lag using Average
Mutual Information (AMI). Since dimension is known, clear the Embedding Dimension field and
specify dimension as 3.

Evaluate whether the reconstructed phase space preserves the system dynamics with the assigned
values by observing the output plots. You can toggle between the display type by choosing between
Individual or All in the Output Plot dropdown menu.

 Reconstruct Phase Space

1-191

The task generates code in your live script. The generated code reflects the parameters and options
you select, and includes code to generate the type of plot you specify. To see the generated code, click

 at the bottom of the task parameter area. The task expands to display the generated code.

1 Functions

1-192

By default, the generated code uses phaseSpace as the name of the output variable. To specify a
different output variable name, enter a new name in the summary line at the top of the task. For
instance, change the name to pSpace.

The task updates the generated code to reflect the new variable name, and the new variable pSpace
appears in the MATLAB workspace. You can use the reconstructed phase space to identify condition
indicators like Lyapunov exponent or correlation dimension.

• “Reconstruct Phase Space and Estimate Condition Indicators Using Live Editor Tasks”

Parameters
Select Signal

Signal — Uniformly sampled time-domain signal
array | timetable

Select a uniformly sampled time-domain signal in array or timetable format.

Specify Phase Space Parameters

Time Lag — Check to use Average Mutual Information (AMI) algorithm to compute time lag
on (default) | off

Check to use Average Mutual Information (AMI) algorithm to compute time lag. Clear to try your own
value of Maximum Lag and Histogram Bins. If the time delay is too small, random noise is
introduced in the states. In contrast, if the lag is too large, the reconstructed dynamics do not
represent the true dynamics of the time series.

Maximum Lag — Maximum value of lags used in the lag estimation
positive scalar

Maximum value of lag used to estimate the time delay using the Average Mutual Information (AMI)
algorithm.

Histogram Bins — Number of bins for discretization when computing the average mutual
information
positive scalar

Number of bins for discretization to compute lag using the AMI algorithm. Set the value of
Histogram Bins based on the length of your signal.

Embedding Dimension — Check to use Percent False Neighbors (PFN) algorithm to compute
embedding dimension
on (default) | off

Check to use Percent False Neighbors (PFN) algorithm to automatically compute embedding
dimension.

 Reconstruct Phase Space

1-193

Maximum Dimension — Maximum value of embedding dimension used in the dimension
estimation
positive scalar

Maximum value of embedding dimension used in the dimension estimation with Percent False
Neighbors (PFN) algorithm.

Distance Threshold — Distance ratio threshold for determining two points as false
neighbors
scalar

Distance ratio threshold for determining two points as false neighbors using Percent False Neighbors
(PFN) algorithm. For more information, see phaseSpaceReconstruction.

Percent False Neighbors — Percent false neighbors threshold for detecting embedding
dimension
scalar

Percent false neighbors threshold for detecting embedding dimension using PFN algorithm. To
specify percent false neighbors, check the Embedding Dimension check box. For more information,
see phaseSpaceReconstruction.

Visualize Results

Output Plot — Number of output plots to display
Individual (default) | All | None

Number of output plots to display. To toggle between the reconstructed plot and the histogram plot,
and to go through each plot, select Individual. To display both plots in the Live Editor, select All.
To hide plots, select None.

See Also
Estimate Approximate Entropy | Estimate Correlation Dimension | Estimate Lyapunov
Exponent | approximateEntropy | correlationDimension | lyapunovExponent |
phaseSpaceReconstruction

Topics
“Reconstruct Phase Space and Estimate Condition Indicators Using Live Editor Tasks”
“Add Interactive Tasks to a Live Script”

Introduced in R2019b

1 Functions

1-194

refresh
Update a workspace ensemble with partitions of modified or added data computed in parallel
processing

Syntax
refresh(wensemble,ensarray)

Description
refresh is a function used in code generated by Diagnostic Feature Designer.

refresh(wensemble,ensarray) updates the workspace ensemble object wensemble with the
combined data partitions in ensarray.

To enable parallel processing, generated code creates data partitions that allow operations to run
simultaneously. In code generated by Diagnostic Feature Designer, refresh updates wensemble
at the conclusion of parallel processing when the computation of all variables and features for all
partitions is complete. refresh reassembles the partitioned results that are stored in ensarray and
replaces the original contents of wensemble with the new values.

Input Arguments
wensemble — Ensemble object
workspaceEnsemble object

Ensemble object, specified as a workspaceEnsemble object. wensemble contains ensemble data
and specifies the variable names and types within the ensemble, such as data variables and condition
variables.

ensarray — New or updated ensemble data
cell array of workspaceEnsemble partitions

New or updated ensemble data, specified as a cell array of workspaceEnsemble parallel-processing
partitions.

See Also
Diagnostic Feature Designer | partition

Topics
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”

Introduced in R2020a

 refresh

1-195

relativeEntropy
One-dimensional Kullback-Leibler divergence of two independent data groups to measure class
separability

Syntax
Z = relativeEntropy(X,I)

Description
relativeEntropy is a function used in code generated by Diagnostic Feature Designer.

Z = relativeEntropy(X,I) calculates the one-dimensional Kullback-Leibler divergence of two
independent subsets of data set X that are grouped according to the logical labels in I. The relative
entropy provides a metric for ranking features according to their ability to separate two classes of
data, such as healthy and faulty machines. The entropy calculation assumes that the data in X follows
a Gaussian distribution.

Code that is generated by Diagnostic Feature Designer uses relativeEntropy when ranking
features with this method.

Input Arguments
X — Data samples to group
vector | matrix

Data set containing data samples that can be logically classified into two groups, specified as a vector
when you have a single set of samples, such as values for one feature, and a matrix when you have
multiple sets of samples.

• When X contains a single set of n features, such as a multiple features extracted from a single data
source, X is a 1-by-n vector.

• When X contains m sets of n features, X is an m-by-n matrix. Each row in X represents one data
source and must correspond to a single logical class.

X must contain at least two rows that correspond to the logical class in I of 0 and two rows that
correspond to the label 1 to calculate legitimate relative entropy values.

For example, suppose that you have a set of five features for each of 20 gearboxes and you are
computing the relative entropy to assess these features. X is a 20-by-5 matrix. Each row represents a
gearbox that is either healthy or faulty, as indicated by the associated logical class label of 0 or 1. At
least two gearboxes must be healthy and at least two gearboxes must be faulty. The relative entropy
indicates how well each feature separates the data for the healthy gearboxes from the data for the
faulty gearboxes.

I — Logical classification label
vector | matrix

Logical classification label that assigns the rows in X to one of two logical classes, specified as a
vector of length m, where m is the number of rows in X.

1 Functions

1-196

For example, suppose once more that X is a 20-by-5 matrix corresponding to 20 gearboxes. The first 9
gearboxes are healthy. The remaining 11 gearboxes are faulty. Define the healthy state as 0 and the
faulty state as 1. Then I has a length of 20. The first 9 labels in I are equal to 0 and the remaining 11
labels are equal to 1.

Output Arguments
Z — Relative entropy
scalar | vector

Relative entropy of two labeled groups, returned as a scalar or a vector.

• If X is a vector, then Z is a scalar.
• If X is a matrix, then relativeEntropy calculates the distance separately for each feature. Z is

then a vector of length n, where n is the number of columns in Z.

relativeEntropy treats NaN entries in X as missing values and ignores them.

References
[1] Theodoridis, Sergios, and Konstantinos Koutroumbas. Pattern Recognition, 175–177. 2nd ed.

Amsterdam; Boston: Academic Press, 2003.

See Also
Diagnostic Feature Designer | correlationWeightedScore

Topics
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”

Introduced in R2020a

 relativeEntropy

1-197

restart
Reset remaining useful life degradation model

Syntax
restart(mdl)
restart(mdl,resetPrior)
restart(___ ,Name,Value)

Description
restart(mdl) resets the internally stored statistics of the degradation process accumulated by the
previous calls to update and resets the InitialLifeTimeValue and CurrentLifeTimeValue
properties of the model. If the SlopeDetectionLevel property of the model is not empty, then the
slope test is also restarted, ignoring any previous detections.

restart(mdl,resetPrior) sets the prior parameter values in mdl to their corresponding posterior
values when resetPrior is true.

restart(___ ,Name,Value) specifies properties of mdl using one or more name-value pair
arguments.

Examples

Reset Degradation Model

Load training data, which is a degradation feature profile for a component.

load('expRealTime.mat')

For this example, assume that the training data is not historical data. When there is no historical
data, you can update your degradation model in real time using observed data.

Create an exponential degradation model with the following settings:

• θ prior distribution with a mean of 2.4 and a variance of 0.006
• β prior distribution with a mean of 0.07 and a variance of 3e-5
• Noise variance of 0.003

mdl = exponentialDegradationModel('Theta',2.4,'ThetaVariance',0.006,...
 'Beta',0.07,'BetaVariance',3e-5,...
 'NoiseVariance',0.003);

Since there is no life time variable in the training data, create an arbitrary life time vector for fitting.

lifeTime = [1:length(expRealTime)];

Observe the degradation feature for 100 iterations. Update the degradation model after each
iteration.

1 Functions

1-198

for i=1:100
 update(mdl,[lifeTime(i) expRealTime(i)])
end

Reset the model, which clears the accumulated statistics from the previous observations and resets
the posterior distributions to the prior distributions.

restart(mdl)

Update Exponential Degradation Model in Real Time

Load training data, which is a degradation feature profile for a component.

load('expRealTime.mat')

For this example, assume that the training data is not historical data. When there is no historical
data, you can update your degradation model in real time using observed data.

Create an exponential degradation model with the following settings:

• Arbitrary θ and β prior distributions with large variances so that the model relies mostly on
observed data

• Noise variance of 0.003

mdl = exponentialDegradationModel('Theta',1,'ThetaVariance',1e6,...
 'Beta',1,'BetaVariance',1e6,...
 'NoiseVariance',0.003);

Since there is no life time variable in the training data, create an arbitrary life time vector for fitting.

lifeTime = [1:length(expRealTime)];

Observe the degradation feature for 10 iterations. Update the degradation model after each iteration.

for i=1:10
 update(mdl,[lifeTime(i) expRealTime(i)])
end

After observing the model for some time, for example at a steady-state operating point, you can
restart the model and save the current posterior distribution as a prior distribution.

restart(mdl,true)

View the updated prior distribution parameters.

mdl.Prior

ans = struct with fields:
 Theta: 2.3555
 ThetaVariance: 0.0058
 Beta: 0.0722
 BetaVariance: 3.6362e-05
 Rho: -0.8429

 restart

1-199

Input Arguments
mdl — Degradation RUL model
linearDegradationModel object | exponentialDegradationModel object

Degradation RUL model, specified as a linearDegradationModel object or an
exponentialDegradationModel object. restart clears the accumulated statistics in mdl and
resets the InitialLifeTimeValue and CurrentLifeTimeValue properties of mdl.

resetPrior — Flag for resetting prior parameter values
false (default) | true

Flag for resetting prior parameter information, specified as a logical value. When resetPrior is:

• true, then restart sets the prior parameter values of mdl to their corresponding current
posterior parameter values. For example, mdl.Prior.Theta is set to mdl.Theta.

• false or omitted, then restart does not update the prior.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: nv1,'value'

Theta — Mean value of model θ parameter
scalar

This property is read-only.

Mean value of model θ parameter, specified as the comma-separated pair 'Theta' and a scalar. Use
this argument to set the Theta property of mdl and the corresponding field of the Prior property of
mdl.

ThetaVariance — Variance of model θ parameter
nonnegative scalar

This property is read-only.

Variance of the θ parameter in the degradation model, specified as the comma-separated pair
'ThetaVariance' and a nonnegative scalar. Use this argument to set the ThetaVariance property
of mdl and the corresponding field of the Prior property of mdl.

Beta — Mean value of model β parameter
scalar

This property is read-only.

Mean value of model β parameter, specified as the comma-separated pair 'Beta' and a scalar. Use
this argument to set the Beta property of mdl and the corresponding field of the Prior property of
mdl.

This argument applies only when mdl is an exponentialDegradationModel.

1 Functions

1-200

BetaVariance — Variance of model β parameter
nonnegative scalar

This property is read-only.

Variance of model β parameter, specified as the comma-separated pair 'BetaVariance' and a
nonnegative scalar. Use this argument to set the BetaVariance property of mdl and the
corresponding field of the Prior property of mdl.

This argument applies only when mdl is an exponentialDegradationModel.

Rho — Correlation between θ and β
scalar value in the range [-1,1]

This property is read-only.

Correlation between θ and β, specified as the comma-separated pair 'Rho' and a scalar value in the
range [-1,1]. Use this argument to set the Rho property of mdl and the corresponding field of the
Prior property of mdl.

This argument applies only when mdl is an exponentialDegradationModel.

NoiseVariance — Model additive noise variance
nonnegative scalar

Model additive noise variance, specified as the comma-separated pair 'NoiseVariance' and a
nonnegative scalar. Use this argument to set the NoiseVariance property of mdl.

SlopeDetectionLevel — Slope detection level
scalar value in the range [0,1] | []

Slope detection level for determining the start of the degradation process, specified as the comma-
separated pair 'SlopeDetectionLevel' and a scalar in the range [0,1]. Use this argument to set
the SlopeDetectionLevel property of mdl.

To disable the slope detection test, set SlopeDetectionLevel to [].

UseParallel — Flag for using parallel computing
false (default) | true

Flag for using parallel computing when fitting prior values from data, specified as the comma-
separated pair 'UseParallel' and either true or false. Use this argument to set the
UseParallel property of mdl.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• This command supports code generation with MATLAB Coder. Before generating code that uses
an RUL model, you must save the model using saveRULModelForCoder. For an example, see
“Generate Code for Predicting Remaining Useful Life”.

 restart

1-201

See Also
Functions
exponentialDegradationModel | linearDegradationModel | update

Topics
“Models for Predicting Remaining Useful Life”

Introduced in R2018a

1 Functions

1-202

restoreState
Restore RUL model state at runtime

Syntax
restoreState(mdl,mdlState)

Description
restoreState(mdl,mdlState) updates the properties of the RUL model mdl according to the
values specified in the structure mdlState. Create mdlState using the readState command. Use
readState and restoreState in an entry-point function for code generation to preserve the values
of model parameters, particularly when you update the model at run time. For more information, see
“Generate Code that Preserves RUL Model State for System Restart”.

Input Arguments
mdl — RUL model
linearDegradationModel | exponentialDegradationModel

RUL model to update, specified as a linearDegradationModel or
exponentialDegradationModel RUL model object.

mdlState — Model state
structure

Model state, specified as a structure. The fields of mdlState correspond to the properties of mdl,
with an extra field that specifies the type of RUL model. Create mdlState using the readState
command.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
loadRULModelForCoder | readState

Topics
“Generate Code that Preserves RUL Model State for System Restart”

Introduced in R2021a

 restoreState

1-203

saveRULModelForCoder
Save RUL model for use in code generation

Syntax
saveRULModelForCoder(mdl,filename)

Description
saveRULModelForCoder(mdl,filename) saves an RUL model to a MAT file for use in code
generation. Use the file with loadModelForCoder in an entry-point function for code generation to
reconstruct the model at compile time. See “Generate Code for Predicting Remaining Useful Life” for
more information.

Input Arguments
mdl — RUL model
linearDegradationModel | exponentialDegradationModel

RUL model to save, specified as a linearDegradationModel or exponentialDegradationModel
RUL model object. saveRULModelForCoder stores the properties of mdl in the MAT file filename.

filename — Name of file
character vector | string

Name of file in which to save the RUL model, specified as character vector or a string. You can
specify a full or relative path in filename. The function creates a MAT file.

See Also
loadRULModelForCoder | readState

Topics
“Generate Code for Predicting Remaining Useful Life”

Introduced in R2021a

1 Functions

1-204

subset
Create new ensemble datastore from subset of existing ensemble datastore

Syntax
sens = subset(ens,idx)

Description
sens = subset(ens,idx) creates a new ensemble datastore sens from a subset of the existing
ensemble datastore ens by extracting the ensemble members that correspond to the indices in idx.

Use subset when you want to perform ensemble operations on a specific ensemble member or group
of ensemble members, and when using a sequence of read commands with the source ensemble does
not provide the ensemble members that you want to process. For example, you can use subset to:

• Extract only ensemble members with a specific fault condition.
• Perform preliminary processing and feature generation on a smaller ensemble that contains a

similar distribution of conditions to the larger ensemble.
• Extract a single ensemble member with specific characteristics to isolate and explore member

behavior.

Specify which members you want to extract using the index vector idx. You can then operate on your
extracted ensemble using the same techniques that you use for any data ensemble.

Examples

Extract Specific Member from Ensemble Datastore

Extract the ensemble member that you identify from an ensemble datastore and use a single read
command to obtain the contents.

For this example, use the following code to create a simulationEnsembleDatastore object using
data previously generated by running a Simulink® model at a various fault values (see
generateSimulationEnsemble). The ensemble includes simulation data for five different values of
a model parameter, ToothFaultGain. Because of the volume of data, the unzip operation takes a
few minutes.

unzip simEnsData.zip
ens = simulationEnsembleDatastore(pwd,'logsout')

ens =
 simulationEnsembleDatastore with properties:

 DataVariables: [5x1 string]
 IndependentVariables: [0x0 string]
 ConditionVariables: [0x0 string]
 SelectedVariables: [5x1 string]
 ReadSize: 1

 subset

1-205

 NumMembers: 5
 LastMemberRead: [0x0 string]
 Files: [5x1 string]

ems_nm = ens.NumMembers

ems_nm = 5

The ensemble contains five files.

Extract the fourth ensemble member into a new, single-member ensemble sens.

idx = 4;
sens = subset(ens,idx);
sens_nm = sens.NumMembers

sens_nm = 1

sens contains one member. View the file name to confirm the member index.

sens.Files

ans =
"C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\25\tp42ac2ec4\predmaint-ex43507974\TransmissionCasingSimplified_log_4.mat"

Reset sens to the first member and read the contents.

reset(sens)
m4 = read(sens)

m4=1×5 table
 PMSignalLogName SimulationInput SimulationMetadata Tacho Vibration
 _______________ ______________________________ _________________________________ ___________________ ___________________

 {'logsout'} {1x1 Simulink.SimulationInput} {1x1 Simulink.SimulationMetadata} {20213x1 timetable} {20213x1 timetable}

m4 contains the data for the extracted member.

Create Subset of Ensemble Datastore

Create a simulation ensemble datastore from a subset of an existing simulation ensemble datastore.

Create a simulationEnsembleDatastore object using data previously generated by running a
Simulink® model at various fault values.

unzip simEnsData.zip
ens = simulationEnsembleDatastore(pwd,'logsout');
ens_nm = ens.NumMembers

ens_nm = 5

The ensemble contains five files. View the file names.

ens.Files

1 Functions

1-206

ans = 5x1 string
 "C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\25\tp42ac2ec4\predmaint-ex46856662\TransmissionCasingSimplified_log_1.mat"
 "C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\25\tp42ac2ec4\predmaint-ex46856662\TransmissionCasingSimplified_log_2.mat"
 "C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\25\tp42ac2ec4\predmaint-ex46856662\TransmissionCasingSimplified_log_3.mat"
 "C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\25\tp42ac2ec4\predmaint-ex46856662\TransmissionCasingSimplified_log_4.mat"
 "C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\25\tp42ac2ec4\predmaint-ex46856662\TransmissionCasingSimplified_log_5.mat"

Extract the first, third, and fifth files into a new ensemble.

idx = [1 3 5];
sens = subset(ens,idx);
sens_nm = sens.NumMembers

sens_nm = 3

The new ensemble contains three members. View the file names.

sens.Files

ans = 3x1 string
 "C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\25\tp42ac2ec4\predmaint-ex46856662\TransmissionCasingSimplified_log_1.mat"
 "C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\25\tp42ac2ec4\predmaint-ex46856662\TransmissionCasingSimplified_log_3.mat"
 "C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\25\tp42ac2ec4\predmaint-ex46856662\TransmissionCasingSimplified_log_5.mat"

The new ensemble contains the three files that you indexed.

Input Arguments
ens — Source ensemble datastore
fileEnsembleDatastore object | simulationEnsembleDatastore object

Source ensemble datastore from which to extract members, specified as a
fileEnsembleDatastore or a simulationEnsembleDatastore object. For an example of
extracting a member from an ensemble datastore, see “Extract Specific Member from Ensemble
Datastore” on page 1-205.

idx — Indices of source ensemble members
numeric vector | integer vector | logical vector

Indices of source ensemble members to extract, specified as a numeric vector, an integer vector, or a
logical vector. The number of elements in the vector must not exceed the number of members in ens.
For numeric or integer vectors, all indices must be positive. For logical vectors, the number of
elements must be equal to the number of ensemble members in ens. For an example of creating and
using an index vector, see “Create Subset of Ensemble Datastore” on page 1-206.

Output Arguments
sens — Extracted ensemble datastore
fileEnsembleDatastore object | simulationEnsembleDatastore object

Extracted ensemble datastore, returned as a fileEnsembleDatastore or a
simulationEnsembleDatastore object.

 subset

1-207

See Also
fileEnsembleDatastore | generateSimulationEnsemble | read | reset |
simulationEnsembleDatastore

Topics
“Data Ensembles for Condition Monitoring and Predictive Maintenance”
“Ensemble Data in Predictive Maintenance Toolbox”

Introduced in R2021a

1 Functions

1-208

tfmoment
Joint moment of the time-frequency distribution of a signal

Syntax
momentJ = tfmoment(xt,order)
momentJ = tfmoment(x,fs,order)
momentJ = tfmoment(x,ts,order)
momentJ = tfmoment(p,fp,tp,order)
momentJ = tfmoment(___ ,Name,Value)

Description
Time-frequency moments provide an efficient way to characterize signals whose frequencies change
in time (that is, are nonstationary). Such signals can arise from machinery with degraded or failed
hardware. Classical Fourier analysis cannot capture the time-varying frequency behavior. Time-
frequency distribution generated by short-time Fourier transform (STFT) or other time-frequency
analysis techniques can capture the time-varying behavior, but directly treating these distributions as
features carries a high computational burden, and potentially introduces unrelated and undesirable
feature characteristics. In contrast, distilling the time-frequency distribution results into low-
dimension time-frequency moments provides a method for capturing the essential features of the
signal in a much smaller data package. Using these moments significantly reduces the computational
burden for feature extraction and comparison — a key benefit for real-time operation [1], [2].

The Predictive Maintenance Toolbox™ implements the three branches of time-frequency moment:

• Conditional spectral moment — tfsmoment
• Conditional temporal moment — tftmoment
• Joint time-frequency moment — tfmoment

momentJ = tfmoment(xt,order) returns the “Joint Time-Frequency Moments” on page 1-215 of
timetable xt as a vector with one or more components. Each momentJ scalar element represents
the joint moment for one of the orders you specify in order. The data in xt can be nonuniformly
sampled.

momentJ = tfmoment(x,fs,order) returns the joint time-frequency moment of time-series vector
x, sampled at rate Fs. The moment is returned as a vector, in which each scalar element represents
the joint moment corresponding to one of the orders you specify in order. With this syntax, x must
be uniformly sampled.

momentJ = tfmoment(x,ts,order) returns the joint time-frequency moment of x sampled at the
time instants specified by ts in seconds.

• If ts is a scalar duration, then tfmoment applies it uniformly to all samples.
• If ts is a vector, then tfmoment applies each element to the corresponding sample in x. Use this

syntax for nonuniform sampling.

momentJ = tfmoment(p,fp,tp,order) returns the joint time-frequency moment of a signal
whose power spectrogram is p. fp contains the frequencies corresponding to the spectral estimate

 tfmoment

1-209

contained in p. tp contains the vector of time instants corresponding to the centers of the windowed
segments used to compute short-time power spectrum estimates. Use this syntax when:

• You already have the power spectrogram you want to use.
• You want to customize the options for pspectrum, rather than accept the default pspectrum

options that tfmoment applies. Use pspectrum first with the options you want, and then use the
output p as input for tfmoment. This approach also allows you to plot the power spectrogram.

momentJ = tfmoment(___ ,Name,Value) specifies additional properties using name-value pair
arguments. Options include moment centralization, frequency-limit specification, and time-limit
specification.

You can use Name,Value with any of the input-argument combinations in previous syntaxes.

Examples

Find the Joint Time-Frequency Moments of a Time Series

Find the joint time-frequency moments of a time series using multiple moment specifications.
Compute the same moment using a specified power spectrogram input.

This example is adapted from “Rolling Element Bearing Fault Diagnosis”, which provides a more
comprehensive treatment of the data sources and history.

Load the data, which contains vibration measurements for a faulty machine. x_inner1 and
sr_inner1 contain the data vector and sample rate.

load tfmoment_data.mat x_inner1 sr_inner1

Examine the data. Construct a time vector from the sample rate, and plot the data. Then zoom in to
an 0.1 s section so that the behavior can be seen more clearly.

t_inner1 = (0:length(x_inner1)-1)/sr_inner1; % Construct time vector of [0 1/sr 2/sr ...] matching dimension of x
figure
plot(t_inner1,x_inner1)
title ('Inner1 Signal')
hold on
xlim([0 0.1]) % Zoom in to an 0.1 s section
hold off

1 Functions

1-210

The plot shows periodic impulsive variations in the acceleration measurements over time.

Find the joint moment of second order for both time and frequency

order = [2,2];
momentJ = tfmoment(x_inner1,sr_inner1,order)

momentJ = 3.6261e+08

The resulting moment has only one element, representing the [2,2] time-frequency pair.

Now include the fourth moment for time and frequency. You can also mix orders within a pair. Include
a joint moment with a second order for time and a fourth order for frequency. The order matrix
contains two columns — the first for time and the second for frequency. Each row contains the order
pair to compute.

order = [2,2;2,4;4,4];
momentJ = tfmoment(x_inner1,t_inner1,order);
momentJ(1)

ans = 3.6259e+08

momentJ(2)

ans = 7.9513e+16

momentJ(3)

ans = 4.0894e+17

 tfmoment

1-211

You can also take the moment using an existing spectrogram. Load the data for a spectrogram which
was computed using the same signal and default options. Input this to tfmoment, using the 3-row
order matrix already computed.

load tfmoment_data.mat p_inner1_def f_p_def t_p_def
momentJ = tfmoment(p_inner1_def,f_p_def,t_p_def,order);
momentJ(1)

ans = 3.6261e+08

momentJ(2)

ans = 7.9513e+16

momentJ(3)

ans = 4.0896e+17

The joint moments distill a large amount of time and frequency data into a small set of single data
points. They represent important, and concise, features that you can use in multiple ways in your
application. Possibilities include comparison with health-regime limits and computing moments of
segmented data over a period of time to assess long-term degradation.

Input Arguments
xt — Time-series signal
timetable

Time-series signal for which tfmoment returns the moments, specified as a timetable that contains
a single variable with a single column. xt must contain increasing, finite row times. If the timetable
has missing or duplicate time points, you can fix it using the tips in “Clean Timetable with Missing,
Duplicate, or Nonuniform Times”. xt can be nonuniformly sampled, with the pspectrum constraint
that the median time interval and the mean time interval must obey:

1
100 < Median time interval

Mean time interval < 100.

order — Moment orders to return
positive integer matrix

Moment orders to return, specified as an n-by-2 matrix with real positive integers.

• The first column provides the orders of time.
• The second column provides the orders of frequency.

Example: momentJ = tfmoment(x,[2,2]) specifies the second-order joint moment (variance) of
the time-frequency distribution of x.
Example: momentJ = tfmoment(x,[2,2;4,4]) specifies the second and fourth moment orders for
both time and frequency of the time-frequency distribution of x.

You can specify any order and number of orders, but low-order moments carry less computational
burden and are better suited to real-time applications. You can also use a different order for time than
you use for frequency. The first four moment orders correspond to the statistical moments of a data
set:

1 Functions

1-212

1 Mean
2 Variance
3 Skewness (degree of asymmetry about the mean)
4 Kurtosis (length of outlier tails in the distribution — a normal distribution has a kurtosis of 3)

For an example, see “Find the Joint Time-Frequency Moments of a Time Series” on page 1-210.

x — Time-series signal
vector

Time-series signal from which tfmoment returns the moments, specified as a vector.

For an example of a time-series input, see “Find the Joint Time-Frequency Moments of a Time Series”
on page 1-210.

fs — Sample rate
positive scalar

Sample rate of x, specified as positive scalar in hertz when x is uniformly sampled.

ts — Sample-time values
duration scalar | vector | duration vector | datetime vector

Sample-time values, specified as one of the following:

• duration scalar — time interval between consecutive samples of X.
• Vector, duration array, or datetime array — time instant or duration corresponding to each

element of x.

ts can be nonuniform, with the pspectrum constraint that the median time interval and the mean
time interval must obey:

1
100 < Median time interval

Mean time interval < 100.

p — Power spectrogram or spectrum of signal
matrix | vector

Power spectrogram or spectrum of a signal, specified as a matrix (spectrogram) or a column vector
(spectrum). p contains an estimate of the short-term, time-localized power spectrum of a time-series
signal. If you specify p, then tfmoment uses p rather than generate its own power spectrogram. For
an example, see “Find the Joint Time-Frequency Moments of a Time Series” on page 1-210.

fp — Frequencies for p
vector

Frequencies for power spectrogram or spectrum p when p is supplied explicitly to tfmoment,
specified as a vector in hertz. The length of fp must be equal to the number of rows in p.

tp — Time information for p
vector | duration vector | datetime vector | duration scalar

Time information for power spectrogram or spectrum p when p is supplied explicitly to tfmoment,
specified as one of the following:

 tfmoment

1-213

• Vector of time points, whose data type can be numeric, duration, or datetime. The length of
vector tp must be equal to the number of columns in p.

• duration scalar that represents the time interval in p. The scalar form of tp can be used only
when p is a power spectrogram matrix.

• For the special case where p is a column vector (power spectrum), tp can be a numeric,
duration, or datetime scalar representing the time point of the spectrum.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Centralize',false,'FrequencyLimits',[10 100] computes the joint time-
frequency moment for the portion of the signal ranging from 10 Hz to 100 Hz.

Centralize — Centralize-moment option
true (default) | false

Centralize-moment option, specified as the comma-separated pair consisting of 'Centralize' and a
logical.

• If Centralize is true, then tfmoment returns the centralized conditional moment by
subtracting the conditional mean (which is the first moment) in the computation.

• If Centralize is false, then tfmoment returns the noncentralized moment, preserving any data
offset.

Example: momentJ = tfmoment(x,[2,2],'Centralize',false).

FrequencyLimits — Frequency limits
full frequency band (default) | [f1 f2]

Frequency limits to use, specified as the comma-separated pair consisting of 'FrequencyLimits'
and a two-element vector containing lower and upper bounds f1 and f2 in hertz. This specification
allows you to exclude a band of data at either end of the spectral range.

TimeLimits — Time Limits
full time band (default) | [t1 t2]

Time limits, specified as the comma-separated pair consisting of 'TimeLimits' and a two-element
vector containing lower and upper bounds t1 and t2 in the same units as ts, and of the data types:

• Numeric or duration when fs or a scalar ts are specified, or when ts is a single, double, or
duration vector

• Numeric, duration, or datetime when ts is specified as a datetime vector

This specification allows you to extract a temporal section of data from a longer data set.

Output Arguments
momentJ — Conditional joint moment
vector

1 Functions

1-214

Conditional joint moment returned as a vector, the scalar elements of which each represents the joint
moment of one of the specified time-frequency order pairs.

momentJ is always a vector, regardless of whether the input data is timetable xt, time-series
vector x, or spectrogram data p.

More About
Joint Time-Frequency Moments

The joint time-frequency moments of a nonstationary signal comprise a set of time-varying
parameters that characterize the signal spectrum as it evolves in time. They are related to the
conditional temporal moments and the joint time-frequency moments. The joint time-frequency
moment is an integral function of frequency, given time, and marginal distribution. The conditional
temporal moment is an integral function of time, given frequency, and marginal distribution. The
calculation of the joint time-frequency moment is a double integral that varies both time and
frequency [1], [2].

Each moment is associated with a specific order, with the first four orders being the statistical
properties of 1) mean, 2) variance, 3) skewness, and 4) kurtosis.

tfmoment computes the joint time-frequency moments of the time-frequency distribution for a signal
x, for the orders specified in order. The function performs these steps:

1 Compute the spectrogram power spectrum, P(t,f), of the input using the pspectrum function and
uses it as a time-frequency distribution. If the syntax used supplies an existing P(t,f), then
tfmoment uses that instead.

2 Estimate the joint time-frequency moment tnωm of the signal using, for the noncentralized
case:

tnωm =∫∫tnωmP t, ω dtdω,

where m is the order and P(t) is the marginal distribution.

For the centralized joint time-frequency moment μt, ω
n, m t , the function uses

μt, ω
n, m t = 1

P ω ∫∫ t − t1
ω

n ω− ω1
t

mP t, ω dtdω,

where t1
ω and ω1

t are the first temporal and spectral time-frequency moments.

References
[1] Loughlin, P. J. "What Are the Time-Frequency Moments of a Signal?" Advanced Signal Processing

Algorithms, Architectures, and Implementations XI, SPIE Proceedings. Vol. 4474, November
2001.

[2] Loughlin, P., F. Cakrak, and L. Cohen. "Conditional Moment Analysis of Transients with Application
to Helicopter Fault Data." Mechanical Systems and Signal Processing. Vol 14, Issue 4, 2000,
pp. 511–522.

 tfmoment

1-215

See Also
pspectrum | tfsmoment | tftmoment

Introduced in R2018a

1 Functions

1-216

tfsmoment
Conditional spectral moment of the time-frequency distribution of a signal

Syntax
momentS = tfsmoment(xt,order)
momentS = tfsmoment(x,fs,order)
momentS = tfsmoment(x,ts,order)
momentS = tfsmoment(p,fp,tp,order)
momentS = tfsmoment(___ ,Name,Value)

[momentS,t] = tfsmoment(___)

tfsmoment(___)

Description
Time-frequency moments provide an efficient way to characterize signals whose frequencies change
in time (that is, are nonstationary). Such signals can arise from machinery with degraded or failed
hardware. Classical Fourier analysis cannot capture the time-varying frequency behavior. Time-
frequency distribution generated by short-time Fourier transform (STFT) or other time-frequency
analysis techniques can capture the time-varying behavior, but directly treating these distributions as
features carries a high computational burden, and potentially introduces unrelated and undesirable
feature characteristics. In contrast, distilling the time-frequency distribution results into low-
dimension time-frequency moments provides a method for capturing the essential features of the
signal in a much smaller data package. Using these moments significantly reduces the computational
burden for feature extraction and comparison — a key benefit for real-time operation [1], [2].

The Predictive Maintenance Toolbox implements the three branches of time-frequency moment:

• Conditional spectral moment — tfsmoment
• Conditional temporal moment — tftmoment
• Joint time-frequency moment — tfmoment

momentS = tfsmoment(xt,order) returns the conditional spectral moment on page 1-234 of
timetable xt as a timetable. The momentS variables provide the spectral moments for the orders
you specify in order. The data in xt can be nonuniformly sampled.

momentS = tfsmoment(x,fs,order) returns the conditional spectral moment of time-series
vector x, sampled at rate Fs. The moment is returned as a matrix, in which each column represents a
spectral moment corresponding each element in order. With this syntax, x must be uniformly
sampled.

momentS = tfsmoment(x,ts,order) returns the conditional spectral moment of x sampled at
the time instants specified by ts in seconds.

• If ts is a scalar duration, then tfsmoment applies it uniformly to all samples.
• If ts is a vector, then tfsmoment applies each element to the corresponding sample in x. Use this

syntax for nonuniform sampling.

 tfsmoment

1-217

momentS = tfsmoment(p,fp,tp,order) returns the conditional spectral moment of a signal
whose power spectrogram is p. fp contains the frequencies corresponding to the spectral estimate
contained in p. tp contains the vector of time instants corresponding to the centers of the windowed
segments used to compute short-time power spectrum estimates. Use this syntax when:

• You already have the power spectrum or spectrogram you want to use.
• You want to customize the options for pspectrum, rather than accept the default pspectrum

options that tfsmoment applies. Use pspectrum first with the options you want, and then use the
output p as input for tfsmoment. This approach also allows you to plot the power spectrogram.

momentS = tfsmoment(___ ,Name,Value) specifies additional properties using name-value pair
arguments. Options include moment centralization and frequency-limit specification.

You can use Name,Value with any of the input-argument combinations in previous syntaxes.

[momentS,t] = tfsmoment(___) returns time vector t.

You can use t with any of the input-argument combinations in previous syntaxes.

tfsmoment(___) with no output arguments plots the conditional spectral moment. The plot x-axis
is time, and the plot y-axis is the corresponding spectral moment.

You can use this syntax with any of the input-argument combinations in previous syntaxes.

Examples

Plot the Conditional Spectral Moment of a Time Series Vector

Plot the second-order conditional spectral moment (variance) of a time series using the plot-only
approach and the return-data approach. Visualize the moment differently by plotting the histogram.
Compare the moments for data arising from faulty and healthy machine conditions.

This example is adapted from “Rolling Element Bearing Fault Diagnosis”, which provides a more
comprehensive treatment of the data sources and history.

Load the data, which contains vibration measurements for two conditions. x_inner1 and sr_inner1
contain the data vector and sample rate for a faulty condition. x_baseline and sr_baseline
contain the data vector and sample rate for a healthy condition.

load tfmoment_data.mat x_inner1 sr_inner1 x_baseline1 sr_baseline1

Examine the faulty-condition data. Construct a time vector from the sample rate, and plot the data.
Then zoom in to an 0.1-s section so that the behavior can be seen more clearly.

t_inner1 = (0:length(x_inner1)-1)/sr_inner1; % Construct time vector of [0 1/sr 2/sr ...] matching dimension of x
figure
plot(t_inner1,x_inner1)
title ('Inner1 Signal')
hold on
xlim([0 0.1]) % Zoom in to an 0.1 s section
hold off

1 Functions

1-218

The plot shows periodic impulsive variations in the acceleration measurements over time.

Plot the second spectral moment (order=2), using the tfsmoment syntax with no output arguments.

order = 2;
figure
tfsmoment(x_inner1,t_inner1,order)
title('Second Spectral Moment of Inner1')

 tfsmoment

1-219

The plot illustrates the changes in the variance of the x_inner1 spectrum over time. You are limited
to this visualization (moment versus time) because tfsmoment returned no data. Now use tfmoment
again to compute the second spectral moment, this time using the syntax that returns both the
moment values and the associated time vector. You can use the sample rate directly in the syntax
(sr_inner1), rather than the time vector you constructed (t_inner1).

[momentS_inner1,t1_inner1] = tfsmoment(x_inner1,sr_inner1,order);

You can now plot moment versus time as you did before, using moment_inner1 and t1_inner1,
with the same result as earlier. But you can also perform additional analysis and visualization of the
moment vector, since tfsmoment returned the data. A histogram can provide concise information on
the signal characteristics.

figure
histogram(momentS_inner1)
title('Second Spectral Moment of Inner1')

1 Functions

1-220

On its own, the histogram does not reveal obvious fault information. However, you can compare it to
the histogram produced by the healthy-condition data.

First, compare the inner and baseline time series directly using the same time-vector construction for
the baseline1 data as previously for the inner1 data.

t_baseline1 = (0:length(x_baseline1)-1)/sr_baseline1;

figure
plot(t_inner1,x_inner1)
hold on
plot(t_baseline1,x_baseline1)
hold off
legend('Faulty Condition','Healthy Condition')
title('Vibration versus Time for Faulty and Healthy Conditions')

 tfsmoment

1-221

Calculate the second spectral moment of the baseline1 data. Compare the baseline1 and inner1
time histories.

[momentS_baseline1,t1_baseline1] = tfsmoment(x_baseline1,sr_baseline1,2);

figure
plot(t1_inner1,momentS_inner1)
hold on
plot(t1_baseline1,momentS_baseline1)
hold off
legend('Faulty Condition','Healthy Condition')
title('Second Spectral Moment versus Time for Faulty and Healthy Conditions')

1 Functions

1-222

The moment plot shows behavior different from the earlier vibration plot. The vibration data for the
faulty case is much noisier with higher-magnitude spikes than for the healthy case, although both
appear to be zero mean. However, the spectral variance (second spectral moment) is significantly
lower for the faulty case. The moment of the faulty case is still more noisy than the healthy case.

Plot the histograms.

figure
histogram(momentS_inner1);
hold on
histogram(momentS_baseline1);
hold off
legend('Faulty Condition','Healthy Condition')
title('Second Spectral Moment for Faulty and Healthy Conditions')

 tfsmoment

1-223

The moment behaviors distinguish the faulty condition from the healthy condition in both plots. The
histogram provides distinct distribution characteristics — center point along x-axis, spread, and peak
histogram bin.

Determine Multiple Orders of Conditional Spectral Moment for a Time Series

Determine the first four conditional spectral moments of a time-series data set, and extract the
moments that you want to visualize with a histogram.

Load the data, which contains vibration measurements (x_inner1) and sample rate(sr_inner1) for
machinery. Then use tfsmoment to compute the first four moments. These moments represent the
statistical quantities of: 1) Mean; 2) Variance; 3) Skewness; and 4) Kurtosis.

You can specify the moment designators as a vector within the order argument.

load tfmoment_data.mat x_inner1 sr_inner1
momentS_inner1 = tfsmoment(x_inner1,sr_inner1,[1 2 3 4]);

Compare the dimensions of the input vector and the output matrix.

xsize = size(x_inner1)

xsize = 1×2

1 Functions

1-224

 146484 1

msize = size(momentS_inner1)

msize = 1×2

 524 4

The data vector x_inner is considerably longer than the vectors in the moment matrix
momentS_inner1 because the spectrogram computation produces optimally-sized
lower-resolution time windows. In this case, tfsmoment returns a moment matrix
containing four columns, one column for each moment order.

Plot the histograms for the third (skewness) and fourth (kurtosis) moments. The third and fourth
columns of momentS_inner1 provide these.

momentS_3 = momentS_inner1(:,3);
momentS_4 = momentS_inner1(:,4);
figure
histogram(momentS_3)
title('Third Spectral Moment (Skewness) of x inner1')

figure
histogram(momentS_4)
title('Fourth Spectral Moment (Kurtosis) of x inner1')

 tfsmoment

1-225

The plots are similar, but each has some unique characteristics with respect to number of bins and
slope steepness.

Use a Customized Power Spectrogram to Compute the Conditional Spectral Moment

By default, tfsmoment calls the function pspectrum internally to generate the power spectrogram
that tfsmoment uses for the moment computation. You can also import an existing power
spectrogram for tfsmoment to use instead. This capability is useful if you already have a power
spectrogram as a starting point, or if you want to customize the pspectrum options by generating
the spectrogram explicitly first.

Input a power spectrogram that has been generated with customized options. Compare the resulting
spectral-moment histogram with one that tfsmoment generates using its pspectrum default options.

Load the data, which includes two power spectrums and the associated frequency and time vectors.

The p_inner1_def spectrum was created using the default pspectrum options. It is equivalent to
what tfsmoment computes internally when an input spectrum is not provided in the syntax.

The p_inner1_MinThr spectrum was created using the MinThreshold pspectrum option. This
option puts a lower bound on nonzero values to screen out low-level noise. For this example, the
threshold was set to screen out noise below the 0.5% level.

1 Functions

1-226

load tfmoment_data.mat p_inner1_def f_p_def t_p_def ...
 p_inner1_MinThr f_p_MinThr t_p_MinThr
load tfmoment_data.mat x_inner1 x_baseline1

Determine the second spectral moments (variance) for both cases.

moment_p_def = tfsmoment(p_inner1_def,f_p_def,t_p_def,2);
moment_p_MinThr = tfsmoment(p_inner1_MinThr,f_p_MinThr,t_p_MinThr,2);

Plot the histograms together.

figure
histogram(moment_p_def);
hold on
histogram(moment_p_MinThr);
hold off
legend('Moment from Default P','Moment from Customized P')
title('Second Spectral Moment for Inner1 from Input Spectrograms')

The histograms have the same overall spread, but the thresholded moment histogram has a higher
peak bin at a lower moment magnitude level than the default moment. This example is for illustration
purposes only, but does show the impact that preprocessing in the spectrum computation stage can
have.

 tfsmoment

1-227

Calculate a Conditional Spectral Moment that is not Centralized

By default, tfsmoment centralizes the moment as part of its calculation. That is, it subtracts the
sensor-data mean (which is the first moment) from the sensor data as part of the “Conditional
Spectral Moments” on page 1-234. If you wish to preserve the offset, you can set the input argument
Centralize to false.

Load the data, which contains vibration measurements x and sample rate sr for machinery. Calculate
the 2nd moment (order = 2) both with centralization (default), and without centralization
(Centralize = false). Plot the histograms together.

load tfmoment_data.mat x_inner1 sr_inner1
momentS_centr = tfsmoment(x_inner1,sr_inner1,2);
momentS_nocentr = tfsmoment(x_inner1,sr_inner1,2,'Centralize',false);

figure
histogram(momentS_centr)
hold on
histogram(momentS_nocentr);
hold off
legend('Centralized','Noncentralized')
title('Second Spectral Moment of x inner1 With and Without Centralization')

The noncentralized distribution is offset to the right.

1 Functions

1-228

Find the Conditional Spectral Moments of Data Measurements in a Timetable

Real-world measurements often come packaged as part of a time-stamped table that records actual
time and readings rather than relative times. You can use the timetable format for capturing this
data. This example shows how tfsmoment operates with a timetable input, in contrast to the data
vector inputs used for the other tfsmoment examples, such as “Plot the Conditional Spectral
Moment of a Time Series Vector” on page 1-218.

Load the data, which consists of a single timetable xt_inner1 containing measurement readings
and time information for a piece of machinery. Examine the properties of the timetable.

load tfmoment_tdata.mat xt_inner1;
xt_inner1.Properties

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Time' 'Variables'}
 VariableNames: {'x_inner1'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowTimes: [146484x1 duration]
 StartTime: 0 sec
 SampleRate: 4.8828e+04
 TimeStep: 2.048e-05 sec
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

This table consists of dimensions Time and the Variables, where the only variable is x_inner1.

Find the second and fourth conditional spectral moments for the data in the timetable. Examine the
properties of the resulting moment timetable.

order = [2 4];
momentS_xt_inner1 = tfsmoment(xt_inner1,order);
momentS_xt_inner1.Properties

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Time' 'Variables'}
 VariableNames: {'CentralSpectralMoment2' 'CentralSpectralMoment4'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowTimes: [524x1 duration]
 StartTime: 0.011725 sec
 SampleRate: 175.6403
 TimeStep: 0.0056935 sec
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

 tfsmoment

1-229

The returned timetable represents the moments in the variable 'CentralSpectralMoment2' and
'CentralSpectralMoment4', providing information not only on what specific moment was
calculated, but also on whether it was centralized.

You can access the time and moment information directly from the timetable properties. Compute
the second and fourth moments. Plot the fourth moment.

tt_inner1 = momentS_xt_inner1.Time;
momentS_inner1_2 = momentS_xt_inner1.CentralSpectralMoment2;
momentS_inner1_4 = momentS_xt_inner1.CentralSpectralMoment4;

figure
plot(tt_inner1,momentS_inner1_4)
title('Fourth Spectral Moment of Timetable Data')

As is illustrated in “Plot the Conditional Spectral Moment of a Time Series Vector” on page 1-218, a
histogram is a very useful visualization for moment data. Plot the histogram, directly referencing the
CentralSpectralMoment2 variable property.

figure
histogram(momentS_xt_inner1.CentralSpectralMoment2)
title('Second Spectral Moment of xt inner1 Timetable')

1 Functions

1-230

Input Arguments
xt — Signal Timetable
timetable

Signal Timetable for which tfsmoment returns the moments, specified as a timetable that contains
a single variable with a single column. xt must contain increasing, finite row times. If the timetable
has missing or duplicate time points, you can fix it using the tips in “Clean Timetable with Missing,
Duplicate, or Nonuniform Times”. xt can be nonuniformly sampled, with the pspectrum constraint
that the median time interval and the mean time interval must obey.

1
100 < Median time interval

Mean time interval < 100.

For an example of timetable input, see “Find the Conditional Spectral Moments of Data
Measurements in a Timetable” on page 1-228

order — Moment orders to return
integer scalar | integer vector

Moment orders to return, specified as one of the following:

• Integer — Compute one moment
• Vector — Compute multiple moments at once.

 tfsmoment

1-231

Example: momentS = tfsmoment(x,2) specifies the second-order spectral moment (variance) of
the time-frequency distribution of x.
Example: momentS = tfsmoment(x,[1 2 3 4]) specifies the first four moment orders of the
time-frequency distribution of x.

You can specify any order and number of orders, but low-order moments carry less computational
burden and are better suited to real-time applications. The first four moment orders correspond to
the statistical moments of a data set:

1 Mean
2 Variance
3 Skewness (degree of asymmetry about the mean)
4 Kurtosis (length of outlier tails in the distribution — a normal distribution has a kurtosis of 3)

For examples, see:

• Timetable data input — “Find the Conditional Spectral Moments of Data Measurements in a
Timetable” on page 1-228

• Time-series vector data input — “Determine Multiple Orders of Conditional Spectral Moment for a
Time Series” on page 1-224

x — Time-series signal
vector

Time-series signal from which tfsmoment returns the moments, specified as a vector.

For an example of a time-series input, see “Plot the Conditional Spectral Moment of a Time Series
Vector” on page 1-218

fs — Sample rate
positive scalar

Sample rate of x, specified as positive scalar in hertz when x is uniformly sampled.

ts — Sample-time values
duration scalar | vector | duration vector | datetime vector

Sample-time values, specified as one of the following:

• duration scalar — time interval between consecutive samples of X.
• Vector, duration array, or datetime array — time instant or duration corresponding to each

element of x.

ts can be nonuniform, with the pspectrum constraint that the median time interval and the mean
time interval must obey:

1
100 < Median time interval

Mean time interval < 100.

p — Power spectrogram or spectrum of signal
vector | matrix

Power spectrogram or spectrum of a signal, specified as a matrix (spectrogram) or a column vector
(spectrum). p contains an estimate of the short-term, time-localized power spectrum of a time-series

1 Functions

1-232

signal. If you specify p, tfsmoment uses p rather than generate its own power spectrogram. For an
example, see “Use a Customized Power Spectrogram to Compute the Conditional Spectral Moment”
on page 1-226.

fp — Frequencies for p
vector

Frequencies for power spectrogram or spectrum p when p is supplied explicitly to tfsmoment,
specified as a vector in hertz. The length of fp must be equal to the number of rows in p.

tp — Time information for p
vector | duration vector | datetime vector | duration scalar

Time information for power spectrogram or spectrum p when p is supplied explicitly to tfsmoment,
specified as one of the following:

• Vector of time points, whose data type can be numeric, duration, or datetime. The length of
vector tp must be equal to the number of columns in p.

• duration scalar that represents the time interval in p. The scalar form of tp can be used only
when p is a power spectrogram matrix.

• For the special case where p is a column vector (power spectrum), tp can be a numeric,
duration, or datetime scalar representing the time point of the spectrum.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Centralize',false,'FrequencyLimits',[10 100] computes the noncentralized
conditional spectral moment for the portion of the signal ranging from 10 Hz to 100 Hz.

Centralize — Centralize-moment option
true (default) | false

Centralize-moment option, specified as the comma-separated pair consisting of 'Centralize' and a
logical.

• If Centralize is true, then tfsmoment returns the centralized conditional moment by
subtracting the conditional mean (which is the first moment) in the computation.

• If Centralize is false, then tfsmoment returns the noncentralized moment, preserving any
data offset.

For an example, see “Calculate a Conditional Spectral Moment that is not Centralized” on page 1-
227.

FrequencyLimits — Frequency limits
full frequency band (default) | [f1 f2]

Frequency limits to use, specified as the comma-separated pair consisting of 'FrequencyLimits'
and a two-element vector containing lower and upper bounds f1 and f2 in hertz. This specification
allows you to exclude a band of data at either end of the spectral range.

 tfsmoment

1-233

Output Arguments
momentS — Conditional spectral moment
timetable array | matrix

Conditional spectral moment returned as a timetable or a matrix.

• If you use timetable data xt, then momentS is a timetable array, containing variables which
are the spectral moments for the orders specified in order. For an example, see “Find the
Conditional Spectral Moments of Data Measurements in a Timetable” on page 1-228.

• If you use vector data x, or spectrogram data p, then momentS is an array whose columns
represent the spectral moments. For an example, see “Determine Multiple Orders of Conditional
Spectral Moment for a Time Series” on page 1-224.

t — Times of moment estimates
double vector

Times of moment estimates in seconds. t results from the time windowing that the internal
spectrogram computation computes. The spectrogram windows require less time resolution than the
original sample vector. Therefore, the returned t vector is more compact than the input data vectors,
as is momentS. If time information has been provided by sample rate or sample time,t starts from the
center of the first time window. If time information has been provided in duration or datetime
format, t preserves the start-time offset.

More About
Conditional Spectral Moments

The conditional spectral moments of a nonstationary signal comprise a set of time-varying parameters
that characterize the signal spectrum as it evolves in time. They are related to the conditional
temporal moments and the joint time-frequency moments. The conditional spectral moment is an
integral function of frequency, given time, and marginal distribution. The conditional temporal
moment is an integral function of time, given frequency, and marginal distribution. The calculation of
the joint time-frequency moment is a double integral that varies both time and frequency [1], [2].

Each moment is associated with a specific order, with the first four orders being the statistical
properties of 1) mean, 2) variance, 3) skewness, and 4) kurtosis.

tfsmoment computes the conditional spectral moments of the time-frequency distribution for a
signal x, for the orders specified in order. The function performs these steps:

1 Compute the spectrogram power spectrum, P(t,f), of the input using the pspectrum function and
uses it as a time-frequency distribution. If the syntax used supplies an existing P(t,f), then
tfsmoment uses that instead.

2 Estimate the conditional spectral moment ωm
t of the signal using, for the noncentralized case:

ωm
t = 1

P t ∫ωmP t, ω dω,

where m is the order and P(t) is the marginal distribution.

For the centralized conditional spectral moment μω
m t , the function uses

1 Functions

1-234

μω
m t = 1

P t ∫ ω− ω1
t

m
P t, ω dω .

References
[1] Loughlin, P. J. "What Are the Time-Frequency Moments of a Signal?" Advanced Signal Processing

Algorithms, Architectures, and Implementations XI, SPIE Proceedings. Vol. 4474, November
2001.

[2] Loughlin, P., F. Cakrak, and L. Cohen. "Conditional Moment Analysis of Transients with Application
to Helicopter Fault Data." Mechanical Systems and Signal Processing. Vol 14, Issue 4, 2000,
pp. 511–522.

See Also
pspectrum | tfmoment | tftmoment

Introduced in R2018a

 tfsmoment

1-235

tftmoment
Conditional temporal moment of the time-frequency distribution of a signal

Syntax
momentT = tftmoment(xt,order)
momentT = tftmoment(x,fs,order)
momentT = tftmoment(x,ts,order)
momentT = tftmoment(p,fp,tp,order)
momentT = tftmoment(___ ,Name,Value)

[momentT,f] = tftmoment(___)

tftmoment(___)

Description
Time-frequency moments provide an efficient way to characterize signals whose frequencies change
in time (that is, are nonstationary). Such signals can arise from machinery with degraded or failed
hardware. Classical Fourier analysis cannot capture the time-varying frequency behavior. Time-
frequency distribution generated by short-time Fourier transform (STFT) or other time-frequency
analysis techniques can capture the time-varying behavior, but directly treating these distributions as
features carries a high computational burden, and potentially introduces unrelated and undesirable
feature characteristics. In contrast, distilling the time-frequency distribution results into low-
dimension time-frequency moments provides a method for capturing the essential features of the
signal in a much smaller data package. Using these moments significantly reduces the computational
burden for feature extraction and comparison — a key benefit for real-time operation [1], [2].

The Predictive Maintenance Toolbox implements the three branches of time-frequency moment:

• Conditional spectral moment — tfsmoment
• Conditional temporal moment — tftmoment
• Joint time-frequency moment — tfmoment

momentT = tftmoment(xt,order) returns the conditional temporal moment on page 1-246 of
timetable xt as a matrix. The momentT variables provide the temporal moments for the orders you
specify in order. The data in xt can be nonuniformly sampled.

momentT = tftmoment(x,fs,order) returns the conditional temporal moment of time-series
vector x, sampled at rate fs. The moment is returned as a matrix, in which each column represents a
temporal moment corresponding to each element in order. With this syntax, x must be uniformly
sampled.

momentT = tftmoment(x,ts,order) returns the conditional temporal moment of x sampled at
the time instants specified by ts in seconds.

• If ts is a scalar duration, then tftmoment applies it uniformly to all samples.
• If ts is a vector, then tftmoment applies each element to the corresponding sample in x. Use this

syntax for nonuniform sampling.

1 Functions

1-236

momentT = tftmoment(p,fp,tp,order) returns the conditional temporal moment of a signal
whose power spectrogram is p. fp contains the frequencies corresponding to the temporal estimate
contained in p. tp contains the vector of time instants corresponding to the centers of the windowed
segments used to compute short-time power spectrum estimates. Use this syntax when:

• You already have the power spectrogram you want to use.
• You want to customize the options for pspectrum, rather than accept the default pspectrum

options that tftmoment applies. Use pspectrum first with the options you want, and then use the
output p as input for tftmoment. This approach also allows you to plot the power spectrogram.

momentT = tftmoment(___ ,Name,Value) specifies additional properties using name-value pair
arguments. Options include moment centralization and time-limit specification.

You can use Name,Value with any of the input-argument combinations in previous syntaxes.

[momentT,f] = tftmoment(___) returns the frequency vector f associated with the moment
matrix in momentT.

You can use f with any of the input-argument combinations in previous syntaxes.

tftmoment(___) with no output arguments plots the conditional temporal moment. The plot x-axis
is frequency, and the plot y-axis is the corresponding temporal moment.

You can use this syntax with any of the input-argument combinations in previous syntaxes.

Examples

Plot the Conditional Temporal Moments of a Time Series Vector

Plot the conditional temporal moments of a time series using a plot-only approach and a return-data
approach.

Load and plot the data, which consists of simulated vibration measurements for a system with a fault
that causes periodic resonances. x is the vector of measurements, and fs is the sampling frequency.

load tftmoment_example x fs

ts=0:1/fs:(length(x)-1)/fs;
figure
subplot(1,2,1)
plot(ts,x)
xlabel('Time in Seconds')
ylabel('Measurement')
title('Simulated Vibration Measurements')

Use the function pspectrum with the 'spectrogram' option to show the frequency content versus
time.

subplot(1,2,2)
pspectrum(x,ts,'spectrogram')

 tftmoment

1-237

The spectrogram shows that the first burst is at 100 Hz, and the second burst is at 300 Hz. The 300-
Hz burst is stronger than the 100-Hz burst by 70 dB.

Plot the second temporal moment (variance), using the plot-only approach with no output arguments
and specifying fs.

figure
order = 2;
tftmoment(x,fs,order);title('Second Temporal Moment')

1 Functions

1-238

There are two distinct features in the plot at 100 and 300 Hz corresponding to the induced
resonances shown by the spectrogram. The moments are much closer in magnitude than the spectral
results were.

Now find the first four temporal moments, using the timeline ts that you already constructed. This
time, use the form that returns both the moment vectors and the associated frequency vectors.
Embed the order array as part of the input argument.

[momentT,f] = tftmoment(x,ts,[1 2 3 4]);

Each column of momentT contains the moment corresponding to one of the input orders.

momentT_1 = momentT(:,1);
momentT_2 = momentT(:,2);
momentT_3 = momentT(:,3);
momentT_4 = momentT(:,4);

Plot the four moments separately to compare the shapes.

figure
subplot(2,2,1)
plot(f,momentT_1)
title('First Temporal Moment — Mean')
xlabel('Frequency in Hz')

subplot(2,2,2)
plot(f,momentT_2)

 tftmoment

1-239

title('Second Temporal Moment — Variance')
xlabel('Frequency in Hz')

subplot(2,2,3)
plot(f,momentT_3)
title('Third Temporal Moment — Skewness')
xlabel('Frequency in Hz')

subplot(2,2,4)
plot(f,momentT_4)
title('Fourth Temporal Moment — Kurtosis')
xlabel('Frequency in Hz')

For the data in this example, the second and fourth temporal moments show the clearest features for
the faulty resonance.

Use an Existing Power Spectrogram to Compute the Conditional Temporal Moment

By default, tfsmoment calls the function pspectrum internally to generate the power spectrogram
that tftmoment uses for the moment computation. You can also import an existing power
spectrogram for tftmoment to use instead. This capability is useful if you already have a power
spectrogram as a starting point, or if you want to customize the pspectrum options by generating
the spectrogram explicitly first.

1 Functions

1-240

Input a power spectrogram that has already been generated using default options. Compare the
resulting temporal-moment plot with one that tftmoment generates using its own pspectrum
default options. The results should be the same.

Load the data, which consists of simulated vibration measurements for a system with a fault that
causes periodic resonances. p is the previously computed spectrogram, fp and tp are the frequency
and time vectors associated with p, x is the original vector of measurements,and fs is the sampling
frequency,.

load tftmoment_example p fp tp x fs

Determine the second temporal moment using the spectrogram and its associated frequency and time
vectors. Plot the moment.

[momentT_p,f_p] = tftmoment(p,fp,tp,2);
figure
subplot(2,1,1)
plot(f_p,momentT_p)
title('Second Temporal Moment using Input Spectrogram ')

Now find and plot the second temporal moments using the original data and sampling rate.

[momentT,f] = tftmoment(x,fs,2);
subplot(2,1,2)
plot(f,momentT)
title('Second Temporal Moment using Measurement Data')

 tftmoment

1-241

As expected, the plots match since the default pspectrum options were used for both. This result
demonstrates the equivalence between the two approaches when there is no customization.

Find the Conditional Temporal Moments of Data Measurements in a Timetable

Real-world measurements often come packaged as part of a time-stamped table that records actual
time and readings rather than relative times. You can use the timetable format for capturing this
data. This example shows how tftmoment operates with a timetable input, in contrast to the data
vector inputs used for the other tftmoment examples, such as “Plot the Conditional Temporal
Moments of a Time Series Vector” on page 1-237.

Load the data, which consists of a single timetable (xt_inner1) containing measurement readings
and time information for a piece of machinery. Examine the properties of the timetable.

load tfmoment_tdata.mat xt_inner1;
xt_inner1.Properties

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Time' 'Variables'}
 VariableNames: {'x_inner1'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowTimes: [146484x1 duration]
 StartTime: 0 sec
 SampleRate: 4.8828e+04
 TimeStep: 2.048e-05 sec
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

This table consists of dimensions Time and the Variables, where the only variable is x_inner1.

Find the second and fourth conditional temporal moments (order = [2 4]) for the data in the
timetable.

order = [2 4];
[momentT_xt_inner1,f] = tftmoment(xt_inner1,order);
size(momentT_xt_inner1)

ans = 1×2

 1024 2

The temporal moments are represented by the columns of momentT_xt_inner1, just as they would
be for a moment taken from a time series vector input.

Plot the moments versus returned frequency vector f.

momentT_inner1_2 = momentT_xt_inner1(:,1);
momentT_inner1_4 = momentT_xt_inner1(:,2);

1 Functions

1-242

figure
subplot(2,1,1)
plot(f,momentT_inner1_2)
title("Second Temporal Moment")

subplot(2,1,2)
plot(f,momentT_inner1_4)
title("Fourth Temporal Moment")
xlabel('Frequency in Hz')

Input Arguments
xt — Time-series signal
timetable

Time-series signal for which tftmoment returns the moments, specified as a timetable that
contains a single variable with a single column. xt must contain increasing, finite row times. If the
timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable with
Missing, Duplicate, or Nonuniform Times”. xt can be nonuniformly sampled, with the pspectrum
constraint that the median time interval and the mean time interval must obey:

1
100 < Median time interval

Mean time interval < 100.

 tftmoment

1-243

For an example of timetable input, see “Find the Conditional Temporal Moments of Data
Measurements in a Timetable” on page 1-242

order — Moment orders to return
integer scalar | integer vector

Moment orders to return, specified as one of the following:

• Integer — Compute one moment.
• Vector — Compute multiple moments at once.

Example: momentT = tftmoment(x,2) specifies the second-order temporal moment (variance) of
the time-frequency distribution of x.
Example: momentT = tftmoment(x,[1 2 3 4]) specifies the first four moment orders of the
time-frequency distribution of x.

You can specify any order and number of orders, but low-order moments carry less computational
burden and are better suited to real-time applications. The first four moment orders correspond to
the statistical moments of a data set:

1 Mean ("group delay" for temporal data)
2 Variance
3 Skewness (degree of asymmetry about the mean)
4 Kurtosis (length of outlier tails in the distribution — a normal distribution has a kurtosis of 3)

For examples, see:

• Timetable data input — “Find the Conditional Temporal Moments of Data Measurements in a
Timetable” on page 1-242

• Time-series vector data input — “Plot the Conditional Temporal Moments of a Time Series Vector”
on page 1-237

x — Time-series signal
vector

Time-series signal from which tftmoment returns the moments, specified as a vector.

For an example of a time-series input, see “Plot the Conditional Temporal Moments of a Time Series
Vector” on page 1-237

fs — Sample rate
positive scalar

Sample rate of x, specified as positive scalar in hertz when x is uniformly sampled.

ts — Sample-time values
duration scalar | vector | duration vector | datetime vector

Sample-time values, specified as one of the following:

• duration scalar — time interval between consecutive samples of X.
• Vector, duration array, or datetime array — time instant or duration corresponding to each

element of x.

1 Functions

1-244

ts can be nonuniform, with the pspectrum constraint that the median time interval and the mean
time interval must obey:

1
100 < Median time interval

Mean time interval < 100.

p — Power spectrogram or spectrum of signal
matrix | vector

Power spectrogram or spectrum of a signal, specified as a matrix (spectrogram) or a column vector
(spectrum). p contains an estimate of the short-term, time-localized power spectrum of a time-series
signal. If you specify p, then tftmoment uses p rather than generate its own power spectrogram. For
an example, see “Use a Customized Power Spectrogram to Compute the Conditional Spectral
Moment” on page 1-226.

fp — Frequencies for p
vector

Frequencies for power spectrogram or spectrum p when p is supplied explicitly to tftmoment,
specified as a vector in hertz. The length of fp must be equal to the number of rows in p.

tp — Time information for p
vector | duration vector | datetime vector | duration scalar

Time information for power spectrogram or spectrum p when p is supplied explicitly to tftmoment,
specified as one of the following:

• Vector of time points, whose data type can be numeric, duration, or datetime. The length of
vector tp must be equal to the number of columns in p.

• duration scalar that represents the time interval in p. The scalar form of tp can be used only
when p is a power spectrogram matrix.

• For the special case where p is a column vector (power spectrum), tp can be a numeric,
duration, or datetime scalar representing the time point of the spectrum.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Centralize',false,'TimeLimits',[20 100] computes the noncentralized
conditional temporal moment for the portion of the signal ranging from 20 sec to 100 sec.

Centralize — Centralize-moment option
true (default) | false

Centralize-moment option, specified as the comma-separated pair consisting of 'Centralize' and a
logical.

• If Centralize is true, then tftmoment returns the centralized conditional moment by
subtracting the conditional mean (which is the first moment) in the computation.

• If Centralize is false, then tftmoment returns the noncentralized moment, preserving any
data offset.

Example: momentT = tftmoment(x,2,'Centralize',false).

 tftmoment

1-245

TimeLimits — Time Limits
full timespan (default) | [t1 t2]

Time limits, specified as the comma-separated pair consisting of 'TimeLimits' and a two-element
vector containing lower and upper bounds t1 and t2 in the same units as ts, and of the data types:

• Numeric or duration when fs or a scalar ts are specified, or when ts is a numeric or
duration vector

• Numeric, duration, or datetime when ts is specified as a datetime vector

This specification allows you to extract a temporal section of data from a longer data set.

Output Arguments
momentT — Conditional temporal moment
matrix

Conditional temporal moment returned as a matrix whose columns represent the temporal moments.

momentT is a matrix with one or more columns, regardless of whether the input data is timetable
xt, time-series vector x, or spectrogram data p.

f — Frequencies of moment estimates
double vector

Frequencies of moment estimates in hertz, specified as a double vector. For an example, see “Plot the
Conditional Temporal Moments of a Time Series Vector” on page 1-237

More About
Conditional Temporal Moments

The conditional temporal moments of a nonstationary signal comprise a set of time-varying
parameters that characterize the group delay as it evolves in time. They are related to the conditional
spectral moment on page 1-234 and the joint time-frequency moments. The conditional spectral
moment is an integral function of frequency, given time, and marginal distribution. The conditional
temporal moment is an integral function of time, given frequency, and marginal distribution. The joint
time-frequency moment is a double integral that varies both time and frequency [1], [2].

Each moment is associated with a specific order, with the first four orders being the statistical
properties of 1) mean, 2) variance, 3) skewness, and 4) kurtosis.

tftmoment computes the conditional temporal moments of the time-frequency distribution for a
signal x, for the orders specified in order. The function performs these steps:

1 Compute the spectrogram power spectrum, P(t,f), of the input using the pspectrum function and
uses it as a time-frequency distribution. If the syntax used supplies an existing P(t,f), then
tftmoment uses that instead.

2 Estimate the conditional temporal moment tn
ω of the signal using, for the non-centralized

case:

tn
ω = 1

P ω ∫tnP t, ω dt,

1 Functions

1-246

where m is the order and P(t) is the marginal distribution.

For the centralized conditional temporal moment μt
n ω , the function uses

μt
n ω = 1

P ω ∫ t − t1
ω

n
P t, ω dt .

References
[1] Loughlin, P. J. "What are the time-frequency moments of a signal?" Advanced Signal Processing

Algorithms, Architectures, and Implementations XI, SPIE Proceedings. Vol. 4474, November
2001.

[2] Loughlin, P., F. Cakrak, and L. Cohen. "Conditional moment analysis of transients with application
to helicopter fault data." Mechanical Systems and Signal Processing. Vol 14, Issue 4, 2000,
pp. 511–522.

See Also
pspectrum | tfmoment | tfsmoment

Introduced in R2018a

 tftmoment

1-247

time2num
Convert duration or datetime array into numeric vector with the specified time unit

Syntax
[x,origUnit] = time2num(T,targetUnit)

Description
time2num is a function used in code generated by Diagnostic Feature Designer.

[x,origUnit] = time2num(T,targetUnit) converts the time array T from its original data type
and unit into a numeric vector x expressed in the unit of targetUnit. For instance, suppose that T is
a datetime vector that contains timestamps for data measurements, and you want to convert T into
a numeric vector x that expresses the time in units of hours. Use x = time2num(T,"hours").

If x is already a numeric vector, time2num sets x to T and ignores targetUnit.

Code that is generated by Diagnostic Feature Designer uses time2num when performing spectral
processing and other computations.

Input Arguments
T — Time array
datetime array | duration array | numeric vector

Time array of sampling instants, expressed as a one-dimensional datetime array, a one-dimensional
duration array, or a numeric vector.

targetUnit — Time unit
"seconds" | "minutes" | "hours" | "days" | "years" | " "

Time unit corresponding to the converted numeric vector, specified as a string. targetUnit can be
one of the following:

• "seconds"
• "minutes"
• "hours"
• "days"
• "years"
• ""

If you omit targetUnit or set targetUnit to "", then time2num derives the original time unit
from T.

• If T is a duration array, then time2num sets timeUnit to the unit of the duration array.

1 Functions

1-248

• If T is a datetime array, then time2num determines the best value for timeUnit based on
sample time. For instance, if the timestamps in T are 100 seconds apart, time2num sets
timeUnit to "minutes".

• If T is a numeric array, then time2num ignores targetUnit and sets x to T.

Example: tNumeric = time2num(Tacho.Time,"seconds")

Output Arguments
x — Sampling instants
numeric vector

Sampling instants, returned as a numeric vector. The starting point x(1) depends on the data type of
T.

• If T is a datetime array, then x(1) is 0.
• If T is a duration array or a numeric vector, then x(1) is T(1), converted to the unit in

targetUnit if targetUnit is specified.
• If T is a numeric vector, then x(1) is T(1).

origUnit — Original unit
string

Original unit of T, returned as a string.

See Also
datetime | duration | effectivefs

Introduced in R2020a

 time2num

1-249

trendability
Measure of similarity between trajectories of condition indicators

Syntax
Y = trendability(X)
Y = trendability(X,lifetimeVar)
Y = trendability(X,lifetimeVar,dataVar)
Y = trendability(X,lifetimeVar,dataVar,memberVar)
Y = trendability(___ ,Name,Value)

trendability(___)

Description
Y = trendability(X) returns the trendability of the lifetime data X. Use trendability as
measure of similarity between the trajectories of a feature measured in several run-to-failure
experiments. A more trendable feature has trajectories with the same underlying shape. The values of
Y range from 0 to 1, where Y is 1 if X is perfectly trendable and 0 if X is non-trendable.

Y = trendability(X,lifetimeVar) returns the trendability of the lifetime data X using the
lifetime variable lifetimeVar.

Y = trendability(X,lifetimeVar,dataVar) returns the trendability of the lifetime data X
using the data variables specified by dataVar.

Y = trendability(X,lifetimeVar,dataVar,memberVar) returns the trendability of the
lifetime data X using the lifetime variable lifetimeVar, the data variables specified by dataVar,
and the member variable memberVar.

Y = trendability(___ ,Name,Value) estimates the trendability with additional options
specified by one or more Name,Value pair arguments. You can use this syntax with any of the
previous input-argument combinations.

trendability(___) with no output arguments plots a bar chart of ranked trendability values.

Examples

Trendability of Data in Cell Array of Matrices

In this example, consider the lifetime data of 10 identical machines with the following 6 potential
prognostic parameters−constant, linear, quadratic, cubic, logarithmic, and periodic. The data set
machineDataCellArray.mat contains C which is a 1x10 cell array of matrices where each element
of the cell array is a matrix that contains the lifetime data of a machine. For each matrix in the cell
array, the first column contains the time while the other columns contain the data variables.

Load the lifetime data and visualize it against time.

1 Functions

1-250

load('machineDataCellArray.mat','C')
display(C)

C=1×10 cell array
 Columns 1 through 4

 {219x7 double} {189x7 double} {202x7 double} {199x7 double}

 Columns 5 through 8

 {229x7 double} {184x7 double} {224x7 double} {208x7 double}

 Columns 9 through 10

 {181x7 double} {197x7 double}

for k = 1:length(C)
 plot(C{k}(:,1), C{k}(:,2:end));
 hold on;
end

Observe the 6 different condition indicators–constant, linear, quadratic, cubic, logarithmic, and
periodic–for all 10 machines on the plot.

Visualize the trendability of the potential prognostic features.

trendability(C)

 trendability

1-251

From the histogram plot, observe that the features Var2 and Var5 have trendability values of 1.
Hence, these features are more appropriate for remaining useful life predictions since they are the
best indicators of machine health.

Trendability of Data in Cell Array of Tables

In this example, consider the lifetime data of 10 identical machines with the following 6 potential
prognostic parameters−constant, linear, quadratic, cubic, logarithmic, and periodic. The data set
machineDataTable.mat contains T, which is a 1x10 cell array of tables where each element of the
cell array contains a table of lifetime data for a machine.

Load and display the data.

load('machineDataTable.mat','T');
display(T)

T=1×10 cell array
 Columns 1 through 4

 {219x7 table} {189x7 table} {202x7 table} {199x7 table}

 Columns 5 through 8

 {229x7 table} {184x7 table} {224x7 table} {208x7 table}

1 Functions

1-252

 Columns 9 through 10

 {181x7 table} {197x7 table}

head(T{1},2)

ans=2×7 table
 Time Constant Linear Quadratic Cubic Logarithmic Periodic
 ____ ________ ______ _________ ______ ___________ ________

 0 3.2029 11.203 7.7029 3.8829 2.2517 0.2029
 0.05 2.8135 10.763 7.2637 3.6006 1.8579 0.12251

Note that every table in the cell array contains the lifetime variable 'Time' and the data variables
'Constant', 'Linear', 'Quadratic', 'Cubic', 'Logarithmic', and 'Periodic'.

Compute trendability with Time as the lifetime variable.

Y = trendability(T,'Time')

Y=1×6 table
 Constant Linear Quadratic Cubic Logarithmic Periodic
 _________ _______ _________ _______ ___________ _________

 0.0035529 0.99984 0.63753 0.92057 0.99582 0.0041995

From the resultant table of trendability values, observe that the linear, cubic, and logarithmic
features have values closer to 1. Hence, these three features are more appropriate for predicting
remaining useful life since they are the best indicators of machine health.

Visualize Trendability of Lifetime Data in Ensemble Datastore

Consider the lifetime data of 4 machines. Each machine has 4 fault codes for the potential condition
indicators−voltage, current, and power. trendabilityEnsemble.zip is a collection of 4 files
where every file contains a timetable of lifetime data for each machine - tbl1.mat, tbl2.mat,
tbl3.mat and tbl4.mat. You can also use files containing data for multiple machines. For each
timetable, the organization of the data is as follows:

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session, change the global execution environment by using the mapreducer function.

mapreducer(0)

Extract the compressed files, read the data in the timetables, and create a
fileEnsembleDatastore object using the timetable data. For more information on creating a file
ensemble datastore, see fileEnsembleDatastore.

 trendability

1-253

unzip trendabilityEnsemble.zip;
ens = fileEnsembleDatastore(pwd,'.mat');
ens.DataVariables = {'Voltage','Current','Power','FaultCode','Machine'};
% Make sure that the function for reading data is on path
addpath(fullfile(matlabroot,'examples','predmaint','main'))
ens.ReadFcn = @readtable_data;
ens.SelectedVariables = {'Voltage','Current','Power','FaultCode','Machine'};

Visualize the trendability of the potential prognostic features with 'Machine' as the member
variable and group the lifetime data by 'FaultCode'. Grouping the lifetime data ensures that
trendability calculates the metric for each fault code separately.

trendability(ens,'MemberVariable','Machine','GroupBy','FaultCode');

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.11 sec
Evaluation completed in 0.25 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.042 sec
Evaluation completed in 0.13 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.15 sec
Evaluation completed in 0.17 sec

trendability returns a histogram plot with the features ranked by their trendability values. A
higher trendability value indicates a more suitable prognostic parameter. For instance, the candidate
feature Current has the highest degree of trendability for machines with FaultCode 1.

1 Functions

1-254

rmpath(fullfile(matlabroot,'examples','predmaint','main')) % Reset path

Input Arguments
X — Lifetime data
cell array of matrices | cell array of tables and timetables | fileEnsembleDatastore object | table |
timetable

Lifetime data, specified as a cell array of matrices, cell array of tables and timetables,
fileEnsembleDatastore object, table, or timetable. Lifetime data contains run-to-failure data of
the systems being monitored. The term lifetime here refers to the life of the machine defined in terms
of the units you use to measure system life. Units of lifetime can be quantities such as the distance
traveled (miles), fuel consumed (gallons), or time since the start of operation (days).

If X is

• a cell array of matrices or tables, the function assumes that each matrix or table contains columns
of lifetime data for a system. Each column of every matrix or table, except the first column,
contains data for a prognostic variable. 'Var1','Var2', ... can be used to refer to the matrix
columns that contain the lifetime data. For instance, the file machineDataCellArray.mat
contains a 1-by-10 cell array of matrices C, where each of the 10 matrices contains data for a
particular machine.

• a table or timetable, the function assumes that each column, except the first one, contains
columns of lifetime data. The table variable names can be used to refer to the columns that
contain the lifetime data. If lifetimeVar is not specified when X is a table, then the first data
column is used as the lifetime variable.

• a fileEnsembleDatastore object, specify the data variables dataVar and member variables
memberVar to be used. If lifetimeVar is not specified, then the first data column is used as the
lifetime variable for computation.

Each numerical member in X is of type double.

lifetimeVar — Lifetime variable
string | character vector

Lifetime variable, specified as a string or character vector. lifetimeVar measures the lifetime of
the systems being monitored and the lifetime data is sorted with respect to lifetimeVar. The value
of lifetimeVar must be a valid ensemble or table variable name.

For a cell array of matrices, the value 'Time' can be used to refer to the first column of each matrix,
which is assumed to contain the lifetime variable. For instance, the file
machineDataCellArray.mat contains the cell array C, where the first column in each matrix
contains the lifetime variable while the other columns contain the data variables.

dataVar — Data variables
string array | character vector | cell array of character vectors

Data variables, specified as a string array, character vector, or cell array of character vectors. Data
variables are the main content of the members of an ensemble. Data variables can include measured
data or derived data for the analysis and development of predictive maintenance algorithms.

If X is

 trendability

1-255

• a fileEnsembleDatastore object, the value of dataVar supersedes the DataVariables
property of the ensemble.

• a cell array of matrices, the value 'Time' can be used to refer to the first column of each matrix,
that is, the lifetime variable lifetimeVar. 'Var1','Var2', ... can be used to refer to the
other matrix columns which contain the lifetime data. For instance, the file
machineDataCellArray.mat contains the cell array C where the first column in each matrix
contains the lifetime variable. The other columns in the cell array C contain the data variables.

• a table, the table variable names can be used to refer to the columns which contain the lifetime
data.

The values of dataVar must be valid ensemble or table variable names. If dataVar is not specified,
the computation includes all data columns except the one specified in lifetimeVar. For instance,
suppose that each entry in a cell array is a table with variables A, B, C, and D. Setting dataVar to
["A","D"] uses only A and D for the computation while C and D are ignored.

memberVar — Member variable
string | character vector

Member variable, specified as a string or character vector. Use memberVar to specify the variable for
identifying the systems or machines in lifetime data X. For instance, in the
fileEnsembleDatastore object, the fifth column in each timetable contains numbers that identify
data from a particular machine. The column name corresponds to the member variable memberVar.

memberVar is ignored when X is specified as a cell array of matrices or tables.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ...,'Method','rank'

LifeTimeVariable — Lifetime variable
strings(0) (default) | string | character vector

Lifetime variable, specified as the comma-separated pair consisting of 'LifeTimeVariable' and
either a string or character vector. If 'LifeTimeVariable' is not specified, then the first data
column is used.

'LifeTimeVariable' is equivalent to the input argument lifetimeVar.

DataVariables — Data variables
strings(0) (default) | string array | character vector | cell array of character vectors

Data variables, specified as the comma-separated pair consisting of 'DataVariables' and either a
string array, character vector or cell array of character vectors.

'DataVariables' is equivalent to the input argument dataVar.

MemberVariable — Member variables
[] (default) | string | character vector

Member variables, specified as the comma-separated pair consisting of 'MemberVariable' and either
a string or character vector.

1 Functions

1-256

'MemberVariable' is equivalent to the input argument memberVar.

GroupBy — Grouping criterion
[] (default) | string | character vector

Grouping criterion, specified as the comma-separated pair consisting of 'GroupBy' and either a string
or character vector. Use 'GroupBy' to specify the variables for grouping the lifetime data X by
operating conditions.

The function computes the metric separately for each group that results from applying the criterion,
such as a fault condition, specified by 'GroupBy'. For instance, in the fileEnsembleDatastore
object ens, the fourth column in each timetable in ens contains the variable 'FaultCode'. The
metric is computed for each machine by grouping the data by 'FaultCode'.

You can only group variables when X is defined as a fileEnsembleDatastore object, table,
timetable, or cell array of tables or timetables.

WindowSize — Size of the centered moving average window for data smoothing
[] (default) | scalar | two-element vector

Size of the centered moving average window for data smoothing, specified as the comma-separated
pair consisting of 'WindowSize' and either a scalar or two-element vector. A Savitzky-Golay filter is
used for data smoothing. For more information, see smoothdata.

If 'WindowSize' is not specified, the window length is automatically determined from lifetime data X
using smoothdata(X,'sgolay'). Set 'WindowSize' to 0 to turn off data smoothing.

Output Arguments
Y — Trendability of lifetime data
vector | table

Trendability of lifetime data, returned as a vector or table.

Trendability is the measure of similarity between the trajectories of a feature measured in several
run-to-failure experiments. A more trendable feature has trajectories with the same underlying shape.
As a system gets progressively closer to failure, a suitable condition indicator is typically highly
trendable. Conversely, any feature that is non-trendable is a less suitable condition indicator. The
values of Y range from 0 to 1.

• Y is 1 if X is perfectly trendable.
• Y is 0 if X is perfectly non-trendable.

Selecting appropriate estimation parameters out of all available features is the first step in building a
reliable remaining useful life prediction engine. The trendability values in Y are useful to determine
which condition indicators best track the degradation process of systems being monitored. The
higher the trendability, the more desirable the feature is for prognostics.

When 'GroupBy' is not specified, then Y is returned as a row vector or single-row table. Conversely,
when 'GroupBy' is specified, then each row in Y corresponds to one group.

 trendability

1-257

Limitations
• When X is a tall table or tall timetable, trendability nevertheless loads the complete array into

memory using gather. If the memory available is inadequate, then trendability returns an
error.

Algorithms
The computation of trendability uses this formula:

trendability = min
j, k

corr x j, xk , j, k = 1, ..., M

where xj represents the vector of measurements of a feature on the jth system and the variable M is
the number of systems monitored.

When xj and xk have different lengths, the shorter vector is resampled to match the length of the
longer vector. To facilitate this process, their time vectors are first normalized to percent lifetime,
that is, [0%, 100%].

References
[1] Coble, J., and J. W. Hines. "Identifying Optimal Prognostic Parameters from Data: A Genetic

Algorithms Approach." In Proceedings of the Annual Conference of the Prognostics and
Health Management Society. 2009.

[2] Coble, J. "Merging Data Sources to Predict Remaining Useful Life - An Automated Method to
Identify Prognostics Parameters." Ph.D. Thesis. University of Tennessee, Knoxville, TN, 2010.

[3] Lei, Y. Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery.
Xi'an, China: Xi'an Jiaotong University Press, 2017.

[4] Lofti, S., J. B. Ali, E. Bechhoefer, and M. Benbouzid. "Wind turbine high-speed shaft bearings
health prognosis through a spectral Kurtosis-derived indices and SVR." Applied Acoustics Vol.
120, 2017, pp. 1-8.

See Also
fileEnsembleDatastore | monotonicity | prognosability

Topics
“Feature Selection for Remaining Useful Life Prediction”

Introduced in R2018b

1 Functions

1-258

tsadifference
Difference signal of a time-synchronous averaged signal

Syntax
Y = tsadifference(X,fs,rpm,orderList)
Y = tsadifference(X,t,rpm,orderList)
Y = tsadifference(XT,rpm,orderList)
[Y,S] = tsadifference(___)
___ = tsadifference(___)

tsadifference(___)

Description
Y = tsadifference(X,fs,rpm,orderList) computes the difference signal Y of the time-
synchronous averaged (TSA) signal vector X using sampling rate fs, the rotational speed rpm, and
the orders to be filtered orderList. Y is computed by removing the regular signal, the value of
'NumSidebands', and their respective harmonics from X. For more information on regular signal, see
tsaregular.

You can use Y to further extract condition indicators of rotating machinery for predictive
maintenance. For example, extracting the FM4 indicator from Y is useful to detect faults isolated to
only a limited number of teeth in a gear mesh.

Y = tsadifference(X,t,rpm,orderList) computes the difference signal Y of the TSA signal
vector X with corresponding time values from t.

Y = tsadifference(XT,rpm,orderList) computes the difference signal Y of the TSA signal
stored in the timetable XT. XT must contain a single numeric column variable.

[Y,S] = tsadifference(___) returns the amplitude spectrum S of the difference signal Y. S is
the amplitude spectrum computed using the normalized fast Fourier transform (FFT) of Y.

___ = tsadifference(___) allows you to specify additional parameters using one or more
name-value pair arguments. You can use this syntax with any of the previous input and output
arguments.

tsadifference(___) with no output arguments plots the time-domain and frequency-domain plots
of the raw and difference TSA signals.

Examples

Find and Visualize the Difference Signal of a Compound TSA Signal

Consider a drivetrain with six gears driven by a motor that is fitted with a vibration sensor, as
depicted in the figure below. Gear 1 on the motor shaft meshes with gear 2 with a gear ratio of 17:1.
The final gear ratio, that is, the ratio between gears 1 and 2 and gears 3 and 4, is 51:1. Gear 5, also
on the motor shaft, meshes with gear 6 with a gear ratio of 10:1. The motor is spinning at 180 RPM,

 tsadifference

1-259

and the sampling rate of the vibration sensor is 50 KHz. To obtain the signal containing just the
meshing components for gears 5 and 6, filter out the components of the shaft rotation, gears 1 and 2
and, 3 and 4 by specifying their gear ratios of 17 and 51 in orderList. The signal components
corresponding to the shaft rotation (order = 1) is always implicitly included in the computation.

rpm = 180;
fs = 50e3;
t = (0:1/fs:(1/3)-1/fs)'; % sample times
orderList = [17 51];
f = rpm/60*[1 orderList 10];

In practice, you would use measured data such as vibration signals obtained from an accelerometer.
For this example, generate TSA signal X, which is the simulated data from the vibration sensor
mounted on the motor.

X = sin(2*pi*f(1)*t) + sin(2*pi*2*f(1)*t) + ... % motor shaft rotation and harmonic
 3*sin(2*pi*f(2)*t) + 3*sin(2*pi*2*f(2)*t) + ... % gear mesh vibration and harmonic for gears 1 and 2
 4*sin(2*pi*f(3)*t) + 4*sin(2*pi*2*f(3)*t) + ... % gear mesh vibration and harmonic for gears 3 and 4
 2*sin(2*pi*10*f(1)*t); % gear mesh vibration for gears 5 and 6

Compute the difference signal of the TSA signal using the sample time, rpm, and the mesh orders to
be filtered out.

Y = tsadifference(X,t,rpm,orderList);

The output Y is a vector containing the gear mesh signal and harmonics for gears 5 and 6.

Visualize the difference signal, the raw TSA signal, and their amplitude spectrum on a plot.

tsadifference(X,fs,rpm,orderList)

1 Functions

1-260

From the amplitude spectrum plot, observe the following components:

• The filtered component at the 17th order and its harmonic at the 34th order
• The second filtered component at the 51st order and its harmonic at the 102nd order
• The residual mesh components for gears 5 and 6 at the 10th order
• The filtered shaft component at the 1st and 2nd orders
• The amplitudes on the spectrum plot match the amplitudes of individual signals

Compute Difference Signal and Amplitude Spectrum of a TSA Signal

In this example, sineWavePhaseMod.mat contains the data of a phase modulated sine wave. XT is a
timetable with the sine wave data and rpm used is 60 RPM. The sine wave has a frequency of 32 Hz.
To filter out the unmodulated sine wave and the sidebands of the phase modulating signal, use 32 as
the orderList.

Load the data and the required variables.

load('sineWavePhaseMod.mat','XT','rpm','orders')
head(XT,4)

ans=4×1 timetable
 Time Data
 ______________ _______

 tsadifference

1-261

 0 sec 0
 0.00097656 sec 0.2011
 0.0019531 sec 0.39399
 0.0029297 sec 0.57078

Note that the time values in XT are strictly increasing, equidistant, and finite.

Compute the difference signal and its amplitude spectrum. Set the value of 'Domain' to
'frequency' since the orders are in Hz.

[Y,S] = tsadifference(XT,rpm,orders,'Domain','frequency')

Y=1024×1 timetable
 Time Data
 ______________ __________

 0 sec 2.2849e-15
 0.00097656 sec 0.046525
 0.0019531 sec 0.091185
 0.0029297 sec 0.13219
 0.0039062 sec 0.1679
 0.0048828 sec 0.19688
 0.0058594 sec 0.21799
 0.0068359 sec 0.23039
 0.0078125 sec 0.2336
 0.0087891 sec 0.22751
 0.0097656 sec 0.21239
 0.010742 sec 0.18888
 0.011719 sec 0.15793
 0.012695 sec 0.12081
 0.013672 sec 0.079041
 0.014648 sec 0.034303
 ⋮

S = 1024×1 complex

 -0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 -0.0000 - 0.0000i
 -0.0000 + 0.0000i
 0.0000 + 0.0000i
 -0.0000 - 0.0000i
 0.0000 + 0.0000i
 ⋮

The output Y is a timetable that contains the difference signal, while S is a vector that contains the
amplitude spectrum of the difference signal Y.

1 Functions

1-262

Visualize the Difference Signal and Amplitude Spectrum of a TSA Signal

In this example, sineWaveRectangularPulse.mat contains the data of a sine wave modulated by a
rectangular pulse. X is a vector with the modulated sine wave data obtained at a shaft speed of 60
RPM. The unmodulated sine wave has a frequency of 32 Hz and amplitude of 1.0 units.

Load the data, and plot the difference signal of the modulated TSA signal X. To obtain the difference
signal, filter out the unmodulated sine wave and the sidebands of the modulation signal by specifying
the frequency of 32 Hz in orderList. Set the value of 'Domain' to 'frequency'.

load('sineWaveRectangularPulse.mat','X','t','rpm','orderList')
tsadifference(X,t,rpm,orderList,'Domain','frequency');

From the plot, observe the waveform and amplitude spectrum of the difference and raw signals,
respectively. Observe that the difference signal contains everything except:

• Unmodulated sine wave at 32 Hz
• First-order sidebands of the unmodulated sine wave at 31 Hz and 33 Hz, respectively

Input Arguments
X — Time-synchronous averaged (TSA) signal
vector

 tsadifference

1-263

Time-synchronous averaged (TSA) signal, specified as a vector. The time-synchronous averaged signal
is computed from a long and relatively periodic raw signal through synchronization, resampling, and
averaging. For more information on TSA signals, see tsa.

Time-synchronous averaging is a convenient method of background noise reduction in a spectrum of
complex signals. It is effective in concentrating useful information that can be extracted from a time-
domain signal for predictive maintenance. The synchronization typically requires a tachometer pulse
signal in addition to the raw sensor data. The TSA signal depicts measurements at equally spaced
angular positions over a single revolution of a shaft of interest.

XT — Time-synchronous averaged signal
timetable

Time synchronous averaged (TSA) signal, specified as a timetable. XT must contain a single numeric
column variable corresponding to the TSA signal. Time values in XT must be strictly increasing,
equidistant, and finite.

fs — Sampling frequency of the TSA signal
positive scalar

Sampling frequency of the TSA signal in Hertz, specified as a positive scalar.

t — Sample times of the TSA signal
positive scalar | vector of positive values

Sample times of the TSA signal, specified as a positive scalar or a vector of positive values.

If t is:

• A positive scalar, it contains the time interval or duration between samples. You must specify t as
a duration variable.

• A vector of positive values, it contains sample times corresponding to elements in X. The time
values must be strictly increasing, equidistant, and finite. You can specify t as a double or
duration variable.

rpm — Rotational speed of the shaft
positive scalar

Rotational speed of the shaft, specified as a positive scalar. tsadifference uses a bandwidth equal
to the shaft speed and the value of 'NumSidebands' around the frequencies of interest to compute Y
from the TSA signal. Specify rpm in revolutions per minute. The signal components corresponding to
this frequency, that is, order = 1 are always filtered out.

orderList — Orders to be filtered out of the TSA signal
vector of positive integers

Orders to be filtered out of the TSA signal, specified as a vector of positive integers. Select the orders
and harmonics to be filtered out of the TSA signal by observing them on the amplitude spectrum plot.
For instance, specify orderList as the known mesh orders in a gear train to filter out the known
components and their harmonics. For more information, see “Visualize the Difference Signal and
Amplitude Spectrum of a TSA Signal” on page 1-262. Specify the units of orderList by selecting the
appropriate value for 'Domain'.

1 Functions

1-264

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ...,'NumSidebands',2

NumHarmonics — Number of shaft and gear meshing frequency harmonics to be filtered
2 (default) | positive integer

Number of shaft and gear meshing frequency harmonics to be filtered, specified as the comma-
separated pair consisting of 'NumHarmonics' and a positive integer. Modify 'NumHarmonics' if your
TSA signal contains more than two known harmonics of components to be filtered.

NumSidebands — Number of sidebands to be filtered from the orderList frequencies and
their harmonics
1 (default) | nonnegative integer

Number of sidebands to be filtered from the orderList frequencies and their harmonics, specified
as the comma-separated pair consisting of 'NumSidebands' and a nonnegative integer. The width of
sidebands is determined using 2*(rpm/60)*(NumSidebands+0.5). Modify 'NumSidebands' based
on the number of sidebands to be filtered from X as observed in the amplitude spectrum plot.

NumRotations — Number of shaft rotations in the TSA signal
1 (default) | positive integer

Number of shaft rotations in the TSA signal, specified as the comma-separated pair consisting of
'NumRotations' and a positive integer. Modify 'NumRotations' if your input X or XT contains data
for more than one rotation of the driver gear shaft. The function uses 'NumRotations' to determine
the number of rotations to be shown on the x-axis of the plot. The filtering results in Y are not
affected by this value.

Domain — Units of the orderList values
'order' (default) | 'frequency'

Units of the orderList values, specified as the comma-separated pair consisting of 'Domain' and
one of the following:

• 'frequency', if the orders in orderList are specified as frequencies in units of Hertz.
• 'order', if the orders in orderList are specified as number of rotations relative to the value of

rpm. For example, if the rotational speed of the driven gear is defined as a factor of the driver
gear rpm, specify 'Domain' as 'order'. Also, choose 'order' if you are comparing data obtained
from machines operating at different speeds.

Output Arguments
Y — Difference signal of the TSA signal
vector | timetable

Difference signal of the TSA signal, returned as:

• A vector, when the TSA signal is specified as a vector X.

 tsadifference

1-265

• A timetable, when the TSA signal is specified as a timetable XT.

The difference signal is computed by removing the regular signal, the first-order sidebands, the value
of 'NumSidebands', and their respective harmonics from X. You can use Y to further extract condition
indicators of rotating machinery for predictive maintenance. For example, extracting the FM4
indicator from Y is useful to detect faults isolated to only a limited number of teeth in a gear mesh.
For more information on how Y is computed, see “Algorithms” on page 1-266.

For more information on regular signal, see tsaregular.

S — Amplitude spectrum of the difference signal
vector

Amplitude spectrum of the difference signal, returned as a vector. S is the normalized fast Fourier
transform of the signal Y. S is the same length as the input TSA signal X. For more information on
how S is computed, see “Algorithms” on page 1-266.

Algorithms
Difference Signal

The difference signal is computed from the TSA signal by filtering the following from the signal
spectrum:

• Shaft frequency and its harmonics
• Gear meshing frequencies and their harmonics
• First-order sidebands at the gear meshing frequencies and their harmonics
• Optionally, the sidebands specified in 'NumSidebands' at the gear meshing frequencies and their

harmonics

tsadifference uses a bandwidth equal to three times the shaft speed and the value of
'NumSidebands', around the frequencies of interest, to compute Y from the TSA signal.

Amplitude Spectrum

The amplitude spectrum of the difference signal is computed as follows,

S = fft(Y)
length(Y) * 2

Here, Y is the difference signal.

References
[1] McFadden, P.D. "Examination of a Technique for the Early Detection of Failure in Gears by Signal

Processing of the Time Domain Average of the Meshing Vibration." Aero Propulsion Technical
Memorandum 434. Melbourne, Australia: Aeronautical Research Laboratories, Apr. 1986.

[2] Večeř, P., Marcel Kreidl, and R. Šmíd. "Condition Indicators for Gearbox Monitoring Systems."
Acta Polytechnica 45.6 (2005), pages 35-43.

[3] Zakrajsek, J. J., Townsend, D. P., and Decker, H. J. "An Analysis of Gear Fault Detection Methods as
Applied to Pitting Fatigue Failure Data." Technical Memorandum 105950. NASA, Apr. 1993.

1 Functions

1-266

[4] Zakrajsek, James J. "An investigation of gear mesh failure prediction techniques." National
Aeronautics and Space Administration Cleveland OH Lewis Research Center, 1989. No.
NASA-E-5049.

See Also
tsaregular | tsaresidual

Introduced in R2018b

 tsadifference

1-267

tsaregular
Regular signal of a time-synchronous averaged signal

Syntax
Y = tsaregular(X,fs,rpm,orderList)
Y = tsaregular(X,t,rpm,orderList)
Y = tsaregular(XT,rpm,orderList)
[Y,S] = tsaregular(___)
___ = tsaregular(___ ,Name,Value)

tsaregular(___)

Description
Y = tsaregular(X,fs,rpm,orderList) computes the regular signal Y of the time-synchronous
averaged (TSA) signal vector X using sampling rate fs, the rotational speed rpm, and the orders to be
retained orderList. Y is computed by retaining the primary frequency, the components in
orderList, and their respective harmonics from X. You can use Y to further extract condition
indicators of rotating machinery for predictive maintenance. For example, extracting the FM0
indicator from Y is useful in identifying major changes such as gear tooth breakage or heavy wear in
a gear box.

Y = tsaregular(X,t,rpm,orderList) computes the regular signal Y of the TSA signal vector X
with corresponding time values from t.

Y = tsaregular(XT,rpm,orderList) computes the regular signal Y of the TSA signal stored in
the timetable XT. XT must contain a single numeric column variable.

[Y,S] = tsaregular(___) returns the amplitude spectrum S of the regular signal Y. S is the
amplitude spectrum computed using the normalized fast Fourier transform (FFT) of Y.

___ = tsaregular(___ ,Name,Value) allows you to specify additional parameters using one or
more name-value pair arguments. You can use this syntax with any of the previous input and output
arguments.

tsaregular(___) with no output arguments plots the time-domain and frequency-domain plots of
the raw and regular TSA signals.

Examples

Find and Visualize the Regular Signal of a Compound TSA Signal

Consider a drivetrain with six gears driven by a motor that is fitted with a vibration sensor, as
depicted in the figure below. Gear 1 on the motor shaft meshes with gear 2 with a gear ratio of 17:1.
The final gear ratio, that is, the ratio between gears 1 and 2 and gears 3 and 4, is 51:1. Gear 5, also
on the motor shaft, meshes with gear 6 with a gear ratio of 10:1. The motor is spinning at 180 RPM,
and the sampling rate of the vibration sensor is 50 KHz. To retain the signal containing the meshing

1 Functions

1-268

components of the gears 1 and 2, gears 3 and 4 and, the shaft rotation, specify their gear ratios of 17
and 51 in orderList. The signal components corresponding to the shaft rotation (order = 1) is
always implicitly included in the computation.

rpm = 180;
fs = 50e3;
t = (0:1/fs:(1/3)-1/fs)'; % sample times
orderList = [17 51];
f = rpm/60*[1 orderList 10];

In practice, you would use measured data such as vibration signals obtained from an accelerometer.
For this example, generate TSA signal X, which is the simulated data from the vibration sensor
mounted on the motor.

X = sin(2*pi*f(1)*t) + sin(2*pi*2*f(1)*t) + ... % motor shaft rotation and harmonic
 3*sin(2*pi*f(2)*t) + 3*sin(2*pi*2*f(2)*t) + ... % gear mesh vibration and harmonic for gears 1 and 2
 4*sin(2*pi*f(3)*t) + 4*sin(2*pi*2*f(3)*t) + ... % gear mesh vibration and harmonic for gears 3 and 4
 2*sin(2*pi*10*f(1)*t); % gear mesh vibration for gears 5 and 6

Compute the regular signal of the TSA signal using the sample time, rpm, and the mesh orders to be
retained.

Y = tsaregular(X,t,rpm,orderList);

The output Y is a vector containing everything except the gear mesh signal and harmonics for gears 5
and 6.

Visualize the regular signal, the raw TSA signal, and their amplitude spectrum on a plot.

tsaregular(X,fs,rpm,orderList)

 tsaregular

1-269

From the amplitude spectrum plot, observe the following components:

• The retained component at the 17th order and its harmonic at the 34th order
• The second retained component at the 51st order and its harmonic at the 102nd order
• The filtered mesh components for gears 5 and 6 at the 10th order
• The retained shaft component at the 1st and 2nd orders
• The amplitudes on the spectrum plot match the amplitudes of individual signals

Compute Regular Signal and Amplitude Spectrum of a TSA Signal

In this example, sineWavePhaseMod.mat contains the data of a phase modulated sine wave. XT is a
timetable with the sine wave data and rpm used is 60 RPM. The sine wave has a frequency of 32 Hz
and to recover the unmodulated sine wave, use 32 as the orderList.

Load the data and the required variables.

load('sineWavePhaseMod.mat','XT','rpm','orders')
head(XT,4)

ans=4×1 timetable
 Time Data
 ______________ _______

1 Functions

1-270

 0 sec 0
 0.00097656 sec 0.2011
 0.0019531 sec 0.39399
 0.0029297 sec 0.57078

Note that the time values in XT are strictly increasing, equidistant, and finite.

Compute the regular signal and its amplitude spectrum. Set the value of 'Domain' to 'frequency'
since the orders are in Hz.

[Y,S] = tsaregular(XT,rpm,orders,'Domain','frequency')

Y=1024×1 timetable
 Time Data
 ______________ __________

 0 sec -2.552e-15
 0.00097656 sec 0.14928
 0.0019531 sec 0.29283
 0.0029297 sec 0.42512
 0.0039062 sec 0.54108
 0.0048828 sec 0.63624
 0.0058594 sec 0.70695
 0.0068359 sec 0.75049
 0.0078125 sec 0.7652
 0.0087891 sec 0.75049
 0.0097656 sec 0.70695
 0.010742 sec 0.63624
 0.011719 sec 0.54108
 0.012695 sec 0.42512
 0.013672 sec 0.29283
 0.014648 sec 0.14928
 ⋮

S = 1024×1 complex

 0.0000 + 0.0000i
 0.0000 - 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 -0.0000 - 0.0000i
 -0.0000 - 0.0000i
 -0.0000 - 0.0000i
 -0.0000 + 0.0000i
 0.0000 + 0.0000i
 -0.0000 - 0.0000i
 ⋮

The output Y is a timetable that contains the regular signal, that is, the unmodulated sine wave, while
S is a vector that contains the amplitude spectrum of the regular signal Y.

 tsaregular

1-271

Visualize the Regular Signal and Amplitude Spectrum of a TSA Signal

In this example, sineWaveAmpMod.mat contains the data of an amplitude modulated sine wave. X is
a vector with the amplitude modulated sine wave data obtained at a shaft speed of 60 RPM. The
unmodulated sine wave has a frequency of 32 Hz and amplitude of 1.0 units.

Load the data, and plot the regular signal of the amplitude modulated TSA signal X. To retain the
unmodulated signal, specify the frequency of 32 Hz in orderList. Set the value of 'Domain' to
'frequency'.

load('sineWaveAmpMod.mat','X','t','rpm','orderList')
tsaregular(X,t,rpm,orderList,'Domain','frequency');

From the plot, observe the waveform and amplitude spectrum of the regular and raw signals,
respectively. Observe that the regular signal contains the unmodulated sine wave with an amplitude
of 1.0 units and frequency of 32 Hz.

Input Arguments
X — Time-synchronous averaged (TSA) signal
vector

Time-synchronous averaged (TSA) signal, specified as a vector. The time-synchronous averaged signal
is computed from a long and relatively periodic raw signal through synchronization, resampling, and
averaging. For more information on TSA signals, see tsa.

1 Functions

1-272

Time-synchronous averaging is a convenient method of background noise reduction in a spectrum of
complex signals. It is effective in concentrating useful information that can be extracted from a time-
domain signal for predictive maintenance. The synchronization typically requires a tachometer pulse
signal in addition to the raw sensor data. The TSA signal depicts measurements at equally spaced
angular positions over a single revolution of a shaft of interest.

XT — Time-synchronous averaged signal
timetable

Time synchronous averaged (TSA) signal, specified as a timetable. XT must contain a single numeric
column variable corresponding to the TSA signal. Time values in XT must be strictly increasing,
equidistant, and finite.

fs — Sampling frequency of the TSA signal
positive scalar

Sampling frequency of the TSA signal in Hertz, specified as a positive scalar.

t — Sample times of the TSA signal
positive scalar | vector of positive values

Sample times of the TSA signal, specified as a positive scalar or a vector of positive values.

If t is:

• A positive scalar, it contains the time interval or duration between samples. You must specify t as
a duration variable.

• A vector of positive values, it contains sample times corresponding to elements in X. The time
values must be strictly increasing, equidistant, and finite. You can specify t as a double or
duration variable.

rpm — Rotational speed of the shaft
positive scalar

Rotational speed of the shaft, specified as a positive scalar. tsaregular uses a bandwidth equal to
the shaft speed and the value of 'NumSidebands' around the frequencies of interest to compute Y
from the TSA signal. Specify rpm in revolutions per minute. The signal components corresponding to
this frequency, that is, order = 1 are always retained.

orderList — Orders to be retained from the TSA signal
vector of positive integers

Orders to be retained from the TSA signal, specified as a vector of positive integers. Select the orders
and harmonics to be retained from the TSA signal by observing them on the amplitude spectrum plot.
For instance, specify orderList as the known mesh orders in a gear train to retain the desired
components and their harmonics. For more information, see “Find and Visualize the Regular Signal of
a Compound TSA Signal” on page 1-268. Specify the units of orderList by selecting the appropriate
value for 'Domain'.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

 tsaregular

1-273

Example: ...,'NumSidebands',2

NumHarmonics — Number of shaft and gear meshing frequency harmonics to be filtered
2 (default) | positive integer

Number of shaft and gear meshing frequency harmonics to be filtered, specified as the comma-
separated pair consisting of 'NumHarmonics' and a positive integer. Modify 'NumHarmonics' if your
TSA signal contains more than two known harmonics of components to be filtered.

NumSidebands — Number of sidebands to be retained from the orderList frequencies and
their harmonics
0 (default) | nonnegative integer

Number of sidebands to be retained from the orderList frequencies and their harmonics, specified
as the comma-separated pair consisting of 'NumSidebands' and a nonnegative integer. The width of
sidebands is determined using 2*(rpm/60)*(NumSidebands+0.5). Modify 'NumSidebands' based
on the number of sidebands to be retained from X as observed in the amplitude spectrum plot.

NumRotations — Number of shaft rotations in the TSA signal
1 (default) | positive integer

Number of shaft rotations in the TSA signal, specified as the comma-separated pair consisting of
'NumRotations' and a positive integer. Modify 'NumRotations' if your input X or XT contains data
for more than one rotation of the driver gear shaft. The function uses 'NumRotations' to determine
the number of rotations to be shown on the x-axis of the plot. The filtering results in Y are not
affected by this value.

Domain — Units of the orderList values
'order' (default) | 'frequency'

Units of the orderList values, specified as the comma-separated pair consisting of 'Domain' and
one of the following:

• 'frequency', if the orders in orderList are specified as frequencies in units of Hertz.
• 'order', if the orders in orderList are specified as number of rotations relative to the value of

rpm. For example, if the rotational speed of the driven gear is defined as a factor of the driver
gear rpm, specify 'Domain' as 'order'. Also, choose 'order' if you are comparing data obtained
from machines operating at different speeds.

Output Arguments
Y — Regular signal of the TSA signal
vector | timetable

Regular signal of the TSA signal, returned as:

• A vector, when the TSA signal is specified as a vector X.
• A timetable, when the TSA signal is specified as a timetable XT.

Y is computed by retaining the primary frequency, the components in orderList, the first-order
sidebands in 'NumSidebands', and their respective harmonics from X. You can use Y to further
extract condition indicators of rotating machinery for predictive maintenance. For example,
extracting the FM0 indicator from Y is useful in identifying major changes such as gear tooth

1 Functions

1-274

breakage or heavy wear in a gear box. For more information on how Y is computed, see “Algorithms”
on page 1-275.

S — Amplitude spectrum of the regular signal
vector

Amplitude spectrum of the regular signal, returned as a vector. S is the normalized fast Fourier
transform of the signal Y. S is the same length as the input TSA signal X. For more information on
how S is computed, see “Algorithms” on page 1-275.

Algorithms
Regular Signal

The regular signal is computed from the TSA signal by retaining the following from the signal
spectrum:

• Shaft frequency and its harmonics
• Gear meshing frequencies and their harmonics
• Optionally, the sidebands specified in 'NumSidebands' at the gear meshing frequencies and their

harmonics

tsaregular uses a bandwidth equal to the shaft speed times the value of 'NumSidebands', around
the frequencies of interest, to compute Y from the TSA signal. The regular signal is related to the
residual signal through the equation Yregular = X − Yresidual. If the first-order sidebands are retained
in the regular signal, then, Yregular = X − Ydif f erence.

Amplitude Spectrum

The amplitude spectrum of the regular signal is computed as follows,

S = fft(Y)
length(Y) * 2

Here, Y is the regular signal.

References
[1] McFadden, P.D. "Examination of a Technique for the Early Detection of Failure in Gears by Signal

Processing of the Time Domain Average of the Meshing Vibration." Aero Propulsion Technical
Memorandum 434. Melbourne, Australia: Aeronautical Research Laboratories, Apr. 1986.

[2] Večeř, P., Marcel Kreidl, and R. Šmíd. "Condition Indicators for Gearbox Monitoring Systems."
Acta Polytechnica 45.6 (2005), pages 35-43.

[3] Zakrajsek, J. J., Townsend, D. P., and Decker, H. J. "An Analysis of Gear Fault Detection Methods as
Applied to Pitting Fatigue Failure Data." Technical Memorandum 105950. NASA, Apr. 1993.

[4] Zakrajsek, James J. "An investigation of gear mesh failure prediction techniques." National
Aeronautics and Space Administration Cleveland OH Lewis Research Center, 1989. No.
NASA-E-5049.

 tsaregular

1-275

See Also
tsadifference | tsaresidual

Introduced in R2018b

1 Functions

1-276

tsaresidual
Residual signal of a time-synchronous averaged signal

Syntax
Y = tsaresidual(X,fs,rpm,orderList)
Y = tsaresidual(X,t,rpm,orderList)
Y = tsaresidual(XT,rpm,orderList)
[Y,S] = tsaresidual(___)
___ = tsaresidual(___ ,Name,Value)

tsaresidual(___)

Description
Y = tsaresidual(X,fs,rpm,orderList) computes the residual signal Y of the time-synchronous
averaged (TSA) signal vector X using sampling rate fs, the rotational speed rpm, and the orders to be
filtered orderList. The residual signal is computed by removing the components in orderList and
their harmonics from X. You can use Y to further extract condition indicators of rotating machinery
for predictive maintenance. For example, extracting the root-mean-squared value of the residual
signal is useful in identifying changes over time which indicate potential machine faults.

Y = tsaresidual(X,t,rpm,orderList) computes the residual signal Y of the TSA signal vector
X with corresponding time values in vector t.

Y = tsaresidual(XT,rpm,orderList) computes the residual signal Y of the TSA signal stored in
the timetable XT. XT must contain a single numeric column variable.

[Y,S] = tsaresidual(___) returns the amplitude spectrum S of the residual signal Y. S is the
amplitude spectrum computed using the normalized fast Fourier transform (FFT) of Y.

___ = tsaresidual(___ ,Name,Value) allows you to specify additional parameters using one or
more name-value pair arguments. You can use this syntax with any of the previous input and output
arguments.

tsaresidual(___) with no output arguments plots the time-domain and frequency-domain plots of
the raw and residual TSA signals.

Examples

Find and Visualize the Residual Signal of a Compound TSA Signal

Consider a drivetrain with six gears driven by a motor that is fitted with a vibration sensor, as
depicted in the figure below. Gear 1 on the motor shaft meshes with gear 2 with a gear ratio of 17:1.
The final gear ratio, that is, the ratio between gears 1 and 2 and gears 3 and 4, is 51:1. Gear 5, also
on the motor shaft, meshes with gear 6 with a gear ratio of 10:1. The motor is spinning at 180 RPM,
and the sampling rate of the vibration sensor is 50 KHz. To obtain the signal containing just the
meshing components for gears 5 and 6, filter out the signal components due to the gears 1 and 2 and,

 tsaresidual

1-277

3 and 4 by specifying their gear ratios of 17 and 51 in orderList. The signal components
corresponding to the shaft rotation (order = 1) is always implicitly included in the computation.

rpm = 180;
fs = 50e3;
t = (0:1/fs:(1/3)-1/fs)'; % sample times
orderList = [17 51];
f = rpm/60*[1 orderList 10];

In practice, you would use measured data such as vibration signals obtained from an accelerometer.
For this example, generate TSA signal X, which is the simulated data from the vibration sensor
mounted on the motor.

X = sin(2*pi*f(1)*t) + sin(2*pi*2*f(1)*t) + ... % motor shaft rotation and harmonic
 3*sin(2*pi*f(2)*t) + 3*sin(2*pi*2*f(2)*t) + ... % gear mesh vibration and harmonic for gears 1 and 2
 4*sin(2*pi*f(3)*t) + 4*sin(2*pi*2*f(3)*t) + ... % gear mesh vibration and harmonic for gears 3 and 4
 2*sin(2*pi*10*f(1)*t); % gear mesh vibration for gears 5 and 6

Compute the residual of the TSA signal using the sample time, rpm, and the mesh orders to be
filtered out.

Y = tsaresidual(X,t,rpm,orderList);

The output Y is a vector containing the gear mesh signal and harmonics for gears 5 and 6.

Visualize the residual signal, the raw TSA signal, and their amplitude spectrum on a plot.

tsaresidual(X,fs,rpm,orderList)

1 Functions

1-278

From the amplitude spectrum plot, observe the following components:

• The filtered component at the 17th order and its harmonic at the 34th order
• The second filtered component at the 51st order and its harmonic at the 102nd order
• The residual mesh components for gears 5 and 6 at the 10th order
• The filtered shaft component at the 1st and 2nd orders
• The amplitudes on the spectrum plot match the amplitudes of individual signals

Compute Residual Signal and Amplitude Spectrum of a TSA Signal

In this example, sineWavePhaseMod.mat contains the data of a phase modulated sine wave. XT is a
timetable with the sine wave data and rpm used is 60 RPM. The sine wave has a frequency of 32 Hz,
and to filter out the unmodulated sine wave, use 32 as the orderList.

Load the data and the required variables.

load('sineWavePhaseMod.mat','XT','rpm','orders')
head(XT,4)

ans=4×1 timetable
 Time Data
 ______________ _______

 tsaresidual

1-279

 0 sec 0
 0.00097656 sec 0.2011
 0.0019531 sec 0.39399
 0.0029297 sec 0.57078

Note that the time values in XT are strictly increasing, equidistant, and finite.

Compute the residual signal and its amplitude spectrum. Set the value of 'Domain' to 'frequency'
since the orders are in Hz.

[Y,S] = tsaresidual(XT,rpm,orders,'Domain','frequency')

Y=1024×1 timetable
 Time Data
 ______________ _________

 0 sec 2.552e-15
 0.00097656 sec 0.051822
 0.0019531 sec 0.10116
 0.0029297 sec 0.14566
 0.0039062 sec 0.18317
 0.0048828 sec 0.21188
 0.0058594 sec 0.23039
 0.0068359 sec 0.23776
 0.0078125 sec 0.2336
 0.0087891 sec 0.21803
 0.0097656 sec 0.19174
 0.010742 sec 0.1559
 0.011719 sec 0.11215
 0.012695 sec 0.062503
 0.013672 sec 0.0092782
 0.014648 sec -0.045032
 ⋮

S = 1024×1 complex

 -0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 -0.0000 - 0.0000i
 -0.0000 + 0.0000i
 0.0000 + 0.0000i
 -0.0000 - 0.0000i
 0.0000 + 0.0000i
 ⋮

The output Y is a timetable that contains the residual signal, that is, the phase modulation signal,
while S is a vector that contains the amplitude spectrum of the residual signal Y.

1 Functions

1-280

Visualize the Residual and Amplitude Spectrum of a TSA Signal

In this example, sineWaveAmpMod.mat contains the data of an amplitude modulated sine wave. X is
a vector with the amplitude modulated sine wave data obtained at a shaft speed of 60 RPM. The
unmodulated sine wave has a frequency of 32 Hz and amplitude of 1.0 units.

Load the data, and plot the residual signal of the amplitude modulated TSA signal X. To obtain the
residual signal, filter out the unmodulated sine wave by specifying the frequency of 32 Hz in
orderList. Set the value of 'Domain' to 'frequency'.

load('sineWaveAmpMod.mat','X','t','rpm','orderList')
tsaresidual(X,t,rpm,orderList,'Domain','frequency');

From the plot, observe the waveform and amplitude spectrum of the residual and raw signals,
respectively.

Input Arguments
X — Time-synchronous averaged (TSA) signal
vector

Time-synchronous averaged (TSA) signal, specified as a vector. The time-synchronous averaged signal
is computed from a long and relatively periodic raw signal through synchronization, resampling, and
averaging. For more information on TSA signals, see tsa.

 tsaresidual

1-281

Time-synchronous averaging is a convenient method of background noise reduction in a spectrum of
complex signals. It is effective in concentrating useful information that can be extracted from a time-
domain signal for predictive maintenance. The synchronization typically requires a tachometer pulse
signal in addition to the raw sensor data. The TSA signal depicts measurements at equally spaced
angular positions over a single revolution of a shaft of interest.

XT — Time-synchronous averaged signal
timetable

Time synchronous averaged (TSA) signal, specified as a timetable. XT must contain a single numeric
column variable corresponding to the TSA signal. Time values in XT must be strictly increasing,
equidistant, and finite.

fs — Sampling frequency of the TSA signal
positive scalar

Sampling frequency of the TSA signal in Hertz, specified as a positive scalar.

t — Sample times of the TSA signal
positive scalar | vector of positive values

Sample times of the TSA signal, specified as a positive scalar or a vector of positive values.

If t is:

• A positive scalar, it contains the time interval or duration between samples. You must specify t as
a duration variable.

• A vector of positive values, it contains sample times corresponding to elements in X. The time
values must be strictly increasing, equidistant, and finite. You can specify t as a double or
duration variable.

rpm — Rotational speed of the shaft
positive scalar

Rotational speed of the shaft, specified as a positive scalar. tsaresidual uses a bandwidth equal to
the shaft speed around the frequencies of interest to filter out the undesired frequency components
from the TSA signal. The signal components corresponding to this frequency, that is, order = 1 are
always filtered out.

Specify rpm in revolutions per minute.

orderList — Orders to be filtered out of the TSA signal
vector of positive integers

Orders to be filtered out of the TSA signal, specified as a vector of positive integers. Select the orders
and harmonics to be filtered out of the TSA signal by observing them on the amplitude spectrum plot.
For instance, specify orderList as the known mesh orders in a gear train to filter out the known
components and their harmonics. For more information, see “Find and Visualize the Residual Signal
of a Compound TSA Signal” on page 1-277. Specify the units of orderList by selecting the
appropriate value for 'Domain'.

1 Functions

1-282

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: …,'NumRotations',5

NumHarmonics — Number of shaft and gear meshing frequency harmonics to be filtered
2 (default) | positive integer

Number of shaft and gear meshing frequency harmonics to be filtered, specified as the comma-
separated pair consisting of 'NumHarmonics' and a positive integer. Modify 'NumHarmonics' if your
TSA signal contains more than two known harmonics of components to be filtered.

NumRotations — Number of shaft rotations in the TSA signal
1 (default) | positive integer

Number of shaft rotations in the TSA signal, specified as the comma-separated pair consisting of
'NumRotations' and a positive integer. Modify 'NumRotations' if your input X or XT contains data
for more than one rotation of the driver gear shaft. The function uses 'NumRotations' to determine
the number of rotations to be shown on the x-axis of the plot. The filtering results in Y are not
affected by this value.

Domain — Units of the orderList values
'order' (default) | 'frequency'

Units of the orderList values, specified as the comma-separated pair consisting of 'Domain' and
one of the following:

• 'frequency', if the orders in orderList are specified as frequencies in units of Hertz.
• 'order', if the orders in orderList are specified as number of rotations relative to the value of

rpm. For example, if the rotational speed of the driven gear is defined as a factor of the driver
gear rpm, specify 'Domain' as 'order'. Also, choose 'order' if you are comparing data obtained
from machines operating at different speeds.

Output Arguments
Y — Residual signal of the TSA signal
vector | timetable

Residual signal of the TSA signal, returned as:

• A vector, when the TSA signal is specified as a vector X
• A timetable, when the TSA signal is specified as a timetable XT

The residual signal is computed by removing the components in orderList and the shaft signal
along with their respective harmonics from X. You can use Y to further extract condition indicators of
rotating machinery for predictive maintenance. For example, extracting the root-mean-squared value
of the residual signal is useful in identifying changes over time, which indicate potential machine
faults. For more information on how Y is computed, see “Algorithms” on page 1-284.

S — Amplitude spectrum of the residual signal
vector

 tsaresidual

1-283

Amplitude spectrum of the residual signal, returned as a vector. S is the normalized fast Fourier
transform of the signal Y. S has the same length as the input TSA signal X. For more information on
how S is computed, see “Algorithms” on page 1-284.

Algorithms
Residual Signal

The residual signal is computed from the TSA signal by removing the following from the signal
spectrum:

• Shaft frequency and its harmonics
• Gear meshing frequencies and their harmonics

The frequencies are removed by computing the discrete Fourier transform (DFT) and setting the
spectrum values to zero at the specified frequencies. tsaresidual uses a bandwidth equal to the
shaft speed around the frequencies of interest to filter out the undesired frequency components, as
mentioned in [4].

Amplitude Spectrum

The amplitude spectrum of the residual signal is computed as follows,

S = fft(Y)
length(Y) * 2

Here, Y is the residual signal.

References
[1] McFadden, P.D. "Examination of a Technique for the Early Detection of Failure in Gears by Signal

Processing of the Time Domain Average of the Meshing Vibration." Aero Propulsion Technical
Memorandum 434. Melbourne, Australia: Aeronautical Research Laboratories, Apr. 1986.

[2] Večeř, P., Marcel Kreidl, and R. Šmíd. "Condition Indicators for Gearbox Monitoring Systems."
Acta Polytechnica 45.6 (2005), pages 35-43.

[3] Zakrajsek, J. J., Townsend, D. P., and Decker, H. J. "An Analysis of Gear Fault Detection Methods as
Applied to Pitting Fatigue Failure Data." Technical Memorandum 105950. NASA, Apr. 1993.

[4] Zakrajsek, James J. "An investigation of gear mesh failure prediction techniques." National
Aeronautics and Space Administration Cleveland OH Lewis Research Center, 1989. No.
NASA-E-5049.

See Also
tsadifference | tsaregular

Introduced in R2018b

1 Functions

1-284

update
Update posterior parameter distribution of degradation remaining useful life model

Syntax
update(mdl,data)

Description
update(mdl,data) updates the posterior estimate of the parameters of the degradation remaining
useful life (RUL) model mdl using the latest degradation measurements in data.

Examples

Update Exponential Degradation Model in Real Time

Load training data, which is a degradation feature profile for a component.

load('expRealTime.mat')

For this example, assume that the training data is not historical data. When there is no historical
data, you can update your degradation model in real time using observed data.

Create an exponential degradation model with the following settings:

• Arbitrary θ and β prior distributions with large variances so that the model relies mostly on
observed data

• Noise variance of 0.003

mdl = exponentialDegradationModel('Theta',1,'ThetaVariance',1e6,...
 'Beta',1,'BetaVariance',1e6,...
 'NoiseVariance',0.003);

Since there is no life time variable in the training data, create an arbitrary life time vector for fitting.

lifeTime = [1:length(expRealTime)];

Observe the degradation feature for 10 iterations. Update the degradation model after each iteration.

for i=1:10
 update(mdl,[lifeTime(i) expRealTime(i)])
end

After observing the model for some time, for example at a steady-state operating point, you can
restart the model and save the current posterior distribution as a prior distribution.

restart(mdl,true)

View the updated prior distribution parameters.

mdl.Prior

 update

1-285

ans = struct with fields:
 Theta: 2.3555
 ThetaVariance: 0.0058
 Beta: 0.0722
 BetaVariance: 3.6362e-05
 Rho: -0.8429

Input Arguments
mdl — Degradation RUL model
linearDegradationModel object | exponentialDegradationModel object

Degradation RUL model, specified as a linearDegradationModel object or an
exponentialDegradationModel object. update updates the posterior estimates of the
degradation model parameters based on the latest degradation feature measurements in data.

For a linearDegradationModel, the updated parameters are Theta and ThetaVariance.

For an exponentialDegradationModel, the updated parameters are Theta, ThetaVariance,
Beta, BetaVariance, and Rho.

update also sets the following properties of mdl:

• InitialLifeTimeValue — The first time you call update, this property is set to the life time
value in the first row of data.

• CurrentLifeTimeValue — Each time you call update, this property is set to the life time value
in the last row of data.

• CurrentMeasurement — Each time you call update, this property is set to the feature
measurement value in the last row of data.

data — Degradation feature measurements
two-column array | table object

Degradation feature measurements, specified as one of the following:

• Two-column array — The first column contains life time values and the second column contains
the corresponding degradation feature measurement.

• table or timetable object that contains variables with names that match the
LifeTimeVariable and DataVariables properties of mdl.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• This command supports code generation with MATLAB Coder. Before generating code that uses
an RUL model, you must save the model using saveRULModelForCoder. When updating the
model at run time, it is also useful to store the model state using readState. For an example, see
“Generate Code that Preserves RUL Model State for System Restart”.

1 Functions

1-286

See Also
Functions
exponentialDegradationModel | fit | linearDegradationModel | predictRUL

Topics
“Update RUL Prediction as Data Arrives”
“RUL Estimation Using RUL Estimator Models”

Introduced in R2018a

 update

1-287

writeMember
Write data to a specific workspace ensemble member

Syntax
writeMember(wensemble,data)
writeMember(wensemble,data,index)

Description
writeMember is a function used in code generated by Diagnostic Feature Designer.

writeMember(wensemble,data) creates a new member in workspace ensemble wensemble, and
appends data to the data set that wensemble references.

writeMember(wensemble,data,index) writes data to the ensemble member that index
identifies. writeMember overwrites the data in existing variables and creates additional columns for
new variables.

Code that is generated by Diagnostic Feature Designer uses writeMember, readMember, and
findIndex under the following conditions:

• The input data is an ensemble datastore, such as a file or simulation ensemble datastore.
• The computation option during code generation specified storing results in local memory rather

than writing results back to the ensemble datastore.

Explicitly specifying a member index when reading and writing within the local version of the data,
which the code manages using a workspaceEnsemble object, ensures member synchronization with
the original ensemble datastore. This synchronization is necessary when you have sequential
member-processing loops, such as when you compute ensemble statistics as a precursor to
computing signal residues.

• During the first member-processing loop, which starts with an empty ensemble, no indexing is
needed. The code appends each new member result to the end of the ensemble.

• During the second loop, the index enables the code to write updated member results to the
correct location within the now-populated ensemble.

For more information about the dual processing loop for ensemble statistics, see “Anatomy of App-
Generated MATLAB Code”.

Input Arguments
wensemble — Ensemble object
workspaceEnsemble object

Ensemble object, specified as a workspaceEnsemble object. wensemble contains ensemble data
and specifies the variable names and types within the ensemble, such as data variables and condition
variables.

1 Functions

1-288

data — Member data
single-row table

Member data, specified as a single-row table.

index — Member index
positive integer

Member index, specified as a positive integer. index identifies the ensemble member to write new
data to. If you omit index, writeMember appends data as a new ensemble member in wensemble.

See Also
Diagnostic Feature Designer | fileEnsembleDatastore | findIndex | readMember |
simulationEnsembleDatastore | workspaceEnsemble

Topics
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”

Introduced in R2020a

 writeMember

1-289

writeToLastMemberRead
Write data to member of an ensemble datastore

Syntax
writeToLastMemberRead(ensemble,Name,Value)
writeToLastMemberRead(ensemble,data)

Description
writeToLastMemberRead(ensemble,Name,Value) writes the data specified one or more
Name,Value pair arguments to the last-read member of an ensemble datastore. The last-read
member is the member most recently accessed using the read command. (See “Data Ensembles for
Condition Monitoring and Predictive Maintenance”.) Each Name must match an entry in the property
ensemble.DataVariables. The function writes the corresponding Value to the ensemble
datastore.

• If ensemble is a simulationEnsembleDatastore object, then writeToLastMemberRead
writes the data to the MAT-file corresponding to the last-read ensemble member
(ensemble.LastMemberRead).

• If ensemble is a fileEnsembleDatastore object, then writeToLastMemberRead uses the
function identified by the property ensemble.WriteToMemberFcn to write the data. If that
property is not defined, then writeToLastMemberRead generates an error.

This syntax is not available when the ReadSize property of ensemble is greater than 1. Use
writeToLastMemberRead(ensemble,data) instead.

writeToLastMemberRead(ensemble,data) writes the data in a table to the last-read ensemble
member. The table variables must match entries in the property ensemble.DataVariables.

Examples

Append Derived Data to Ensemble Members

You can process data in an ensemble datastore and add derived variables to the ensemble members.
For this example, process a variable value to compute a label that indicates whether the ensemble
member contains data obtained with a fault present. You then add that label to the ensemble.

For this example, use the following code to create a simulationEnsembleDatastore object using
data previously generated by running a Simulink® model at a various fault values. (See
generateSimulationEnsemble.) The ensemble includes simulation data for five different values of
a model parameter, ToothFaultGain. The model was configured to log the simulation data to a
variable named logsout in the MAT-files that are stored for this example in simEnsData.zip.
Because of the volume of data, the unzip operation might take a minute or two.

unzip simEnsData.zip % extract compressed files
ensemble = simulationEnsembleDatastore(pwd,'logsout')

ensemble =
 simulationEnsembleDatastore with properties:

1 Functions

1-290

 DataVariables: [5x1 string]
 IndependentVariables: [0x0 string]
 ConditionVariables: [0x0 string]
 SelectedVariables: [5x1 string]
 ReadSize: 1
 NumMembers: 5
 LastMemberRead: [0x0 string]
 Files: [5x1 string]

Read the data from the first member in the ensemble. The software determines which ensemble is the
first member, and updates the property ensemble.LastMemberRead to reflect the name of the
corresponding file.

data = read(ensemble)

data=1×5 table
 PMSignalLogName SimulationInput SimulationMetadata Tacho Vibration
 _______________ ______________________________ _________________________________ ___________________ ___________________

 {'logsout'} {1x1 Simulink.SimulationInput} {1x1 Simulink.SimulationMetadata} {20202x1 timetable} {20202x1 timetable}

By default, all the variables stored in the ensemble data are designated as SelectedVariables.
Therefore, the returned table row includes all ensemble variables, including a variable
SimulationInput, which contains the Simulink.SimulationInput object that configured the
simulation for this ensemble member. That object includes the ToothFaultGain value used for the
ensemble member, stored in a data structure in its Variables property. Examine that value. (For
more information about how the simulation configuration is stored, see
Simulink.SimulationInput (Simulink).)

data.SimulationInput{1}

ans =
 SimulationInput with properties:

 ModelName: 'TransmissionCasingSimplified'
 InitialState: [0x0 Simulink.op.ModelOperatingPoint]
 ExternalInput: []
 ModelParameters: [0x0 Simulink.Simulation.ModelParameter]
 BlockParameters: [0x0 Simulink.Simulation.BlockParameter]
 Variables: [1x1 Simulink.Simulation.Variable]
 PreSimFcn: []
 PostSimFcn: []
 UserString: ''

Inputvars = data.SimulationInput{1}.Variables;
Inputvars.Name

ans =
'ToothFaultGain'

Inputvars.Value

ans = -2

 writeToLastMemberRead

1-291

Suppose that you want to convert the ToothFaultGain values for each ensemble member into a
binary indicator of whether or not a tooth fault is present. Suppose further that you know from your
experience with the system that tooth-fault gain values less than 0.1 in magnitude are small enough
to be considered healthy operation. Convert the gain value for this ensemble into an indicator that is
0 (no fault) for –0.1 < gain < 0.1, and 1 (fault) otherwise.

sT = abs(Inputvars.Value) < 0.1;

To append the new tooth-fault indicator to the corresponding ensemble data, first expand the list of
data variables in the ensemble to include a variable for the indicator.

ensemble.DataVariables = [ensemble.DataVariables; "ToothFault"];
ensemble.DataVariables

ans = 6x1 string
 "PMSignalLogName"
 "SimulationInput"
 "SimulationMetadata"
 "Tacho"
 "Vibration"
 "ToothFault"

This operation is conceptually equivalent to adding a column to the table of ensemble data. Now that
DataVariables contains the new variable name, assign the derived value to that column of the
member using writeToLastMemberRead.

writeToLastMemberRead(ensemble,'ToothFault',sT);

In practice, you want to append the tooth-fault indicator to every member in the ensemble. To do so,
reset the ensemble datastore to its unread state, so that the next read operation starts at the first
ensemble member. Then, loop through all the ensemble members, computing ToothFault for each
member and appending it. The reset operation does not change ensemble.DataVariables, so
"ToothFault" is still present in that list.

reset(ensemble);

sT = false;
while hasdata(ensemble)
 data = read(ensemble);
 InputVars = data.SimulationInput{1}.Variables;
 TFGain = InputVars.Value;
 sT = abs(TFGain) < 0.1;
 writeToLastMemberRead(ensemble,'ToothFault',sT);
end

Finally, designate the new tooth-fault indicator as a condition variable in the ensemble datastore. You
can use this designation to track and refer to variables in the ensemble data that represent conditions
under which the member data was generated.

ensemble.ConditionVariables = {"ToothFault"};
ensemble.ConditionVariables

ans =
"ToothFault"

1 Functions

1-292

You can add the new variable to ensemble.SelectedVariables when you want to read it out for
further analysis. For an example that shows more ways to manipulate and analyze data stored in a
simulationEnsembleDatastore object, see “Using Simulink to Generate Fault Data”.

Read from and Write to a File Ensemble Datastore

Create a file ensemble datastore for data stored in MATLAB files, and configure it with functions that
tell the software how to read from and write to the datastore. (For more details about configuring file
ensemble datastores, see “File Ensemble Datastore With Measured Data”.)

% Create ensemble datastore that points to datafiles in current folder
unzip fileEnsData.zip % extract compressed files
location = pwd;
extension = '.mat';
fensemble = fileEnsembleDatastore(location,extension);

% Specify data and condition variables
fensemble.DataVariables = ["gs";"sr";"load";"rate"];
fensemble.ConditionVariables = "label";

% Configure with functions for reading and writing variable data
addpath(fullfile(matlabroot,'examples','predmaint','main')) % Make sure functions are on path
fensemble.ReadFcn = @readBearingData;
fensemble.WriteToMemberFcn = @writeBearingData;

The functions tell the read and writeToLastMemberRead commands how to interact with the data
files that make up the ensemble. Thus, when you call the read command, it uses readBearingData
to read all the variables in fensemble.SelectedVariables. For this example, readBearingData
extracts requested variables from a structure, bearing, and other variables stored in the file. It also
parses the filename for the fault status of the data.

Specify variables to read, and read them from the first member of the ensemble.

fensemble.SelectedVariables = ["gs";"load";"label"];
data = read(fensemble)

data=1×3 table
 label gs load
 ________ _______________ ____

 "Faulty" {5000x1 double} 0

You can now process the data from the member as needed. For this example, compute the average
value of the signal stored in the variable gs. Extract the data from the table returned by read.

gsdata = data.gs{1};
gsmean = mean(gsdata);

You can write the mean value gsmean back to the data file as a new variable. To do so, first expand
the list of data variables in the ensemble to include a variable for the new value. Call the new variable
gsMean.

fensemble.DataVariables = [fensemble.DataVariables;"gsMean"]

 writeToLastMemberRead

1-293

fensemble =
 fileEnsembleDatastore with properties:

 ReadFcn: @readBearingData
 WriteToMemberFcn: @writeBearingData
 DataVariables: [5x1 string]
 IndependentVariables: [0x0 string]
 ConditionVariables: "label"
 SelectedVariables: [3x1 string]
 ReadSize: 1
 NumMembers: 5
 LastMemberRead: "C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\25\tp42ac2ec4\predmaint-ex34165887\FaultData_01.mat"
 Files: [5x1 string]

Next, write the derived mean value to the file corresponding to the last-read ensemble member. (See
“Data Ensembles for Condition Monitoring and Predictive Maintenance”.) When you call
writeToLastMemberRead, it converts the data to a structure and calls
fensemble.WriteToMemberFcn to write the data to the file.

writeToLastMemberRead(fensemble,'gsMean',gsmean);

Calling read again advances the last-read-member indicator to the next file in the ensemble and
reads the data from that file.

data = read(fensemble)

data=1×3 table
 label gs load
 ________ _______________ ____

 "Faulty" {5000x1 double} 50

You can confirm that this data is from a different member by examining the load variable in the
table. Here, its value is 50, while in the previously read member, it was 0.

You can repeat the processing steps to compute and append the mean for this ensemble member. In
practice, it is more useful to automate the process of reading, processing, and writing data. To do so,
reset the ensemble to a state in which no data has been read. Then loop through the ensemble and
perform the read, process, and write steps for each member.

reset(fensemble)
while hasdata(fensemble)
 data = read(fensemble);
 gsdata = data.gs{1};
 gsmean = mean(gsdata);
 writeToLastMemberRead(fensemble,'gsMean',gsmean);
end

The hasdata command returns false when every member of the ensemble has been read. Now,
each data file in the ensemble includes the gsMean variable derived from the data gs in that file. You
can use techniques like this loop to extract and process data from your ensemble files as you develop
a predictive-maintenance algorithm. For an example illustrating in more detail the use of a file
ensemble datastore in the algorithm-development process, see “Rolling Element Bearing Fault
Diagnosis”. The example also shows how to use Parallel Computing Toolbox™ to speed up the
processing of large data ensembles.

1 Functions

1-294

To confirm that the derived variable is present in the file ensemble datastore, read it from the first
and second ensemble members. To do so, reset the ensemble again, and add the new variable to the
selected variables. In practice, after you have computed derived values, it can be useful to read only
those values without rereading the unprocessed data, which can take significant space in memory.
For this example, read selected variables that include the new variable, gsMean, but do not include
the unprocessed data, gs.

reset(fensemble)
fensemble.SelectedVariables = ["label";"load";"gsMean"];
data1 = read(fensemble)

data1=1×3 table
 label load gsMean
 ________ ____ ________

 "Faulty" 0 -0.22648

data2 = read(fensemble)

data2=1×3 table
 label load gsMean
 ________ ____ ________

 "Faulty" 50 -0.22937

rmpath(fullfile(matlabroot,'examples','predmaint','main')) % Reset path

Input Arguments
ensemble — Ensemble datastore
simulationEnsembleDatastore object | fileEnsembleDatastore object

Ensemble datastore to add data variables to, specified as a:

• simulationEnsembleDatastore object
• fileEnsembleDatastore object

writeToLastMemberRead writes the data to the last-read member of the specified ensemble,
identified by the LastMemberRead property of the ensemble. The last-read ensemble member is the
member most recently accessed using the read command. (See “Data Ensembles for Condition
Monitoring and Predictive Maintenance”.)

data — New data
table

New data to write to the current ensemble member, specified as a table. For example, suppose that
you have calculated two values that you want to add to the current member: a vector stored as the
MATLAB workspace variable Afilt, and a scalar stored as Amean. Use the following command to
construct data.

data = table(Afilt,Amean,'VariableNames',{'Afilt','Amean'});

The number of rows in the table must match the ReadSize property of ensemble. By default,
ReadSize = 1, and you write a single table row to a single ensemble member. When you configure

 writeToLastMemberRead

1-295

ensemble to read multiple members at once, you must write to the same number of members. For
instance, if ReadSize = 3, then data is a three-row table.

Limitations
• When you use a simulationEnsembleDatastore to manage data at a remote location, such as

cloud storage using Amazon S3™ (Simple Storage Service), Windows Azure® Blob Storage, and
Hadoop® Distributed File System (HDFS™), you cannot use writeToLastMemberRead to add
data to the ensemble datastore.

See Also
fileEnsembleDatastore | read | simulationEnsembleDatastore

Topics
“Data Ensembles for Condition Monitoring and Predictive Maintenance”

Introduced in R2018a

1 Functions

1-296

Objects

2

covariateSurvivalModel
Proportional hazard survival model for estimating remaining useful life

Description
Use covariateSurvivalModel to estimate the remaining useful life (RUL) of a component using a
proportional hazard survival model. This model describes the survival probability of a test component
using historical information about the life span of components and associated covariates. Covariates
are environmental or explanatory variables, such as the component manufacturer or operating
conditions. Covariate survival models are useful when the only data you have is the failure times and
associated covariates for an ensemble of similar components, such as multiple machines
manufactured to the same specifications. For more information on the survival model, see
“Proportional Hazard Survival Model” on page 2-9.

To configure a covariateSurvivalModel object for a specific type of component, use fit, which
estimates model coefficients using a collection of failure-time data and associated covariates. After
you configure the parameters of your covariate survival model, you can then predict the remaining
useful life of similar components using predictRUL. For a basic example illustrating RUL prediction,
see “Update RUL Prediction as Data Arrives”.

If you have only life span measurements and do not have covariate information, use a
reliabilitySurvivalModel.

For general information on predicting remaining useful life, see “Models for Predicting Remaining
Useful Life”.

Creation

Syntax
mdl = covariateSurvivalModel
mdl = covariateSurvivalModel(initModel)
mdl = covariateSurvivalModel(___ ,Name,Value)

Description

mdl = covariateSurvivalModel creates a covariate survival model for estimating RUL and
initializes the model with default settings.

mdl = covariateSurvivalModel(initModel) creates a covariate survival model and initializes
the model parameters using an existing covariateSurvivalModel object initModel.

mdl = covariateSurvivalModel(___ ,Name,Value) specifies user-settable model properties
using name-value pairs. For example, covariateSurvivalModel('LifeTimeUnit',"days")
creates a covariate survival model with that uses days as a lifetime unit. You can specify multiple
name-value pairs. Enclose each property name in quotes.

2 Objects

2-2

Input Arguments

initModel — Covariate survival model
covariateSurvivalModel object

Covariate survival model, specified as a covariateSurvivalModel object.

Properties
BaselineCumulativeHazard — Baseline hazard rate function
two-column array

This property is read-only.

Baseline hazard rate of the survival model, specified as a two-column array and estimated by the fit
function. The second column contains the baseline survival functions values, and the first column
contains the corresponding lifetime values.

For more information on the survival model, see “Proportional Hazard Survival Model” on page 2-
9.

EncodingMethod — Encoding method
"dummy" (default) | "binary"

Encoding method for the categorical features in EncodedVariables, specified as one of the
following:

• "dummy" — For a categorical feature with N categories, encode the variable using (N - 1) bits.
• "binary" — Binary encoding

You can specify EncodingMethod:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Standardize — Flag for standardizing covariate features
false (default) | true

Flag for standardizing covariate features when calculating Cox regression parameters, specified as a
logical value. When Standardize is true, numeric covariate variables are standardized such that
covariate X becomes (X-mean(X))/std(X).

Standardization does not affect encoded categorical variables.

You can specify Standardize:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Ties — Method for handling tied failure times
"breslow" (default) | "efron"

Method for handling tied failure times, specified as either "breslow" or "efron". For more
information on these methods, see “Cox Proportional Hazards Model”.

 covariateSurvivalModel

2-3

You can specify Ties:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Options — Numerical and display settings
structure

Numerical and display settings for Cox regression, specified as a structure created using
statset('coxphfit'). You can modify the options in the structure using dot notation.

You can specify Options:

• Using a name-value pair when you create the model
• Using dot notation after model creation

ParameterValues — Covariate multiplying coefficients
vector

This property is read-only.

Covariate multiplying coefficients of the survival model, specified as a scalar and estimated by the
fit function. For more information on the survival model, see “Proportional Hazard Survival Model”
on page 2-9.

ParameterCovariance — Covariance of covariate multiplying coefficients
array

This property is read-only.

Covariance of the covariate multiplying coefficients, specified as a positive array with size equal to
the number of coefficients and estimated by the fit function.

ParameterNames — Covariate multiplying coefficient names
string array

This property is read-only.

Covariate multiplying coefficient names specified as a string array and assigned when the model is
trained using the fit function.

Coefficients corresponding to numeric covariates have the same name as the corresponding data
variable in DataVariables. For encoded variables, the coefficient names contain the name of the
corresponding encoded variable from EncodedVariables and a representation of the encoded bit
order.

CensorVariable — Censor variable
"" (default) | string

Censor variable, specified as a string that contains a valid MATLAB variable name. The censor
variable is a binary variable that indicates which life-time measurements in data are not end-of-life
values.

CensorVariable must not match any of the strings in DataVariables or LifeTimeVariable.

2 Objects

2-4

You can specify CensorVariable:

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Using dot notation after model creation

LifeTimeVariable — Lifetime variable
"" (default) | string

Lifetime variable, specified as a string that contains a valid MATLAB variable name. For survival
models, the lifetime variable contains the historical life span measurements of components.

You can specify LifeTimeVariable:

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Manually using dot notation

LifeTimeUnit — Lifetime variable units
"" (default) | string

Lifetime variable units, specified as a string.

The units of the lifetime variable do not need to be time-based. The life of the test component can be
measured in terms of a usage variable, such as distance traveled (miles) or fuel consumed (gallons).

DataVariables — Covariate data variable
"" (default) | string | string array

Covariate data variables, specified as a string or string array. The strings in DataVariables must be
valid MATLAB variable names. Covariates are also called environmental or explanatory variables.

You can specify DataVariables:

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Using dot notation after model creation

EncodedVariables — Encoded covariate variables
"" (default) | string | string array

Encoded covariate variables, specified as a string or string array. The strings in EncodedVariables
must be valid MATLAB variable names. Encoded variables are usually nonnumeric categorical
features that fit converts to numeric vectors before fitting. You can also designate logical or
numeric values that take values from a small set to be encoded.

To specify the method of encoding, use EncodingMethod.

You can specify EncodedVariables:

• Using a name-value pair when you create the model
• As an argument when you call the fit function

 covariateSurvivalModel

2-5

• Using dot notation after model creation

The strings in EncodedVariables must be a subset of the strings in DataVariables.

UserData — Additional model information
[] (default) | any data type or format

Additional model information for bookkeeping purposes, specified as any data type or format. The
model does not use this information.

You can specify UserData:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Object Functions
predictRUL Estimate remaining useful life for a test component
fit Estimate parameters of remaining useful life model using historical data
plot Plot survival function for covariate survival remaining useful life model

Examples

Train Covariate Survival Model

Load training data.

load('covariateData.mat')

This data contains battery discharge times and related covariate information. The covariate variables
are:

• Temperature
• Load
• Manufacturer

The manufacturer information is a categorical variable that must be encoded.

Create a covariate survival model.

mdl = covariateSurvivalModel;

Train the survival model using the training data, specifying the life time variable, data variables, and
encoded variable. There is no censor variable for this training data.

fit(mdl,covariateData,"DischargeTime",["Temperature","Load","Manufacturer"],[],"Manufacturer")

Successful convergence: Norm of gradient less than OPTIONS.TolFun

Plot the baseline survival function for the model.

plot(mdl)

2 Objects

2-6

Predict RUL Using Covariate Survival Model

Load training data.

load('covariateData.mat')

This data contains battery discharge times and related covariate information. The covariate variables
are:

• Temperature
• Load
• Manufacturer

The manufacturer information is a categorical variable that must be encoded.

Create a covariate survival model, and train it using the training data.

mdl = covariateSurvivalModel('LifeTimeVariable',"DischargeTime",'LifeTimeUnit',"hours",...
 'DataVariables',["Temperature","Load","Manufacturer"],'EncodedVariables',"Manufacturer");
fit(mdl,covariateData)

Successful convergence: Norm of gradient less than OPTIONS.TolFun

 covariateSurvivalModel

2-7

Suppose you have a battery pack manufactured by maker B that has run for 30 hours. Create a test
data table that contains the usage time, DischargeTime, and the measured ambient temperature,
TestAmbientTemperature, and current drawn, TestBatteryLoad.

TestBatteryLoad = 25;
TestAmbientTemperature = 60;
DischargeTime = hours(30);
TestData = timetable(TestAmbientTemperature,TestBatteryLoad,"B",'RowTimes',hours(30));
TestData.Properties.VariableNames = {'Temperature','Load','Manufacturer'};
TestData.Properties.DimensionNames{1} = 'DischargeTime';

Predict the RUL for the battery.

estRUL = predictRUL(mdl,TestData)

estRUL = duration
 38.337 hr

Plot the survival function for the covariate data of the battery.

plot(mdl,TestData)

2 Objects

2-8

Algorithms
Proportional Hazard Survival Model

The covariateSurvivalModel object implements the following proportional hazard survival
model:

h X, t = h0 t ebTX

where:

• X is a vector covariate values.
• b is a vector of covariate multiplying coefficients. These coefficients correspond to the

ParameterValues property of the model.
• h0(t) is the baseline hazard rate function, which corresponds to the

BaselineCumulativeHazard property of the model.
• h(X,t) is the hazard rate at time t for X.

To find the parameters of this model, the fit function uses the coxphfit function.

For more information on proportional hazard models, see “Cox Proportional Hazards Model”.

See Also
Functions
coxphfit | fit | predictRUL | reliabilitySurvivalModel

Topics
“Update RUL Prediction as Data Arrives”
“RUL Estimation Using RUL Estimator Models”
“Cox Proportional Hazards Model”

Introduced in R2018a

 covariateSurvivalModel

2-9

exponentialDegradationModel
Exponential degradation model for estimating remaining useful life

Description
Use exponentialDegradationModel to model an exponential degradation process for estimating
the remaining useful life (RUL) of a component. Degradation models estimate the RUL by predicting
when a monitored signal will cross a predefined threshold. Exponential degradation models are useful
when the component experiences cumulative degradation. For more information on the degradation
model, see “Exponential Degradation Model” on page 2-18.

To configure an exponentialDegradationModel object for a specific type of component, you can:

• Estimate the model parameters using historical data regarding the health of an ensemble of
similar components, such as multiple machines manufactured to the same specifications. To do so,
use fit.

• Specify the model parameters when you create the model based on your knowledge of the
component degradation process.

Once you configure the parameters of your degradation model, you can then predict the remaining
useful life of similar components using predictRUL. For a basic example illustrating RUL prediction
with a degradation model, see “Update RUL Prediction as Data Arrives”.

For general information on predicting remaining useful life, see “Models for Predicting Remaining
Useful Life”.

Creation

Syntax
mdl = exponentialDegradationModel
mdl = exponentialDegradationModel(Name,Value)

Description

mdl = exponentialDegradationModel creates an exponential degradation model for estimating
RUL and initializes the model with default settings.

mdl = exponentialDegradationModel(Name,Value) specifies user-settable model properties
using name-value pairs. For example, exponentialDegradationModel('NoiseVariance',0.5)
creates an exponential degradation model with a model noise variance of 0.5. You can specify
multiple name-value pairs. Enclose each property name in quotes.

Properties
Theta — Current mean value of the θ parameter
scalar

2 Objects

2-10

This property is read-only.

Current mean value of the θ parameter in the degradation model, specified as a scalar. For more
information on the degradation model, see “Exponential Degradation Model” on page 2-18.

You can specify Theta using a name-value pair argument when you:

• Create the model.
• Reset the model using the restart function.

Otherwise, the value of Theta changes when you use the update function.

ThetaVariance — Current variance of the θ parameter
nonnegative scalar

This property is read-only.

Current variance of the θ parameter in the degradation model, specified as a nonnegative scalar. For
more information on the degradation model, see “Exponential Degradation Model” on page 2-18.

You can specify ThetaVariance using a name-value pair argument when you:

• Create the model.
• Reset the model using the restart function.

Otherwise, the value of ThetaVariance changes when you use the update function.

Beta — Current mean value of the β parameter
scalar

This property is read-only.

Current mean value of the β parameter in the degradation model, specified as a scalar. For more
information on the degradation model, see “Exponential Degradation Model” on page 2-18.

You can specify Beta using a name-value pair argument when you:

• Create the model.
• Reset the model using the restart function.

Otherwise, the value of Beta changes when you use the update function.

BetaVariance — Current variance of the β parameter
nonnegative scalar

This property is read-only.

Current variance of the β parameter in the degradation model, specified as a nonnegative scalar. For
more information on the degradation model, see “Exponential Degradation Model” on page 2-18.

You can specify BetaVariance using a name-value pair argument when you:

• Create the model.
• Reset the model using the restart function.

 exponentialDegradationModel

2-11

Otherwise, the value of BetaVariance changes when you use the update function.

Rho — Current correlation between θ and β
0 (default) | scalar value in the range [-1,1]

This property is read-only.

Current correlation between θ and β, specified as a scalar value in the range [-1,1]. For more
information on the degradation model, see “Exponential Degradation Model” on page 2-18.

You can specify Rho using a name-value pair argument when you:

• Create the model.
• Reset the model using the restart function.

Otherwise, the value of Rho changes when you use the update function.

Phi — Current intercept value
scalar

Current intercept value ϕ in the degradation model, specified as a scalar. For more information on the
degradation model, see “Exponential Degradation Model” on page 2-18.

You can specify Phi using a name-value pair argument when you create the model. Otherwise, the
value of Phi changes when you estimate the model prior using the fit function.

Prior — Prior information about model parameters
structure

Prior information about model parameters, specified as a structure with the following fields:

• Theta — Mean value of θ
• ThetaVariance — Variance of θ
• Beta — Mean value of β
• BetaVariance — Variance of β
• Rho — Correlation between θ and β.

You can specify the fields of Prior:

• When you create the model. When you specify Theta, ThetaVariance, Beta, BetaVariance, or
Rho at model creation using name-value pairs, the corresponding field of Prior is also set.

• Using the fit function. In this case, the prior values are derived from the data used to fit the
model.

• Using the restart function. In this case, the current values of Theta, ThetaVariance, Beta,
BetaVariance, and Rho are copied to the corresponding fields of Prior.

• Using dot notation after model creation.

For more information on the degradation model, see “Exponential Degradation Model” on page 2-18.

NoiseVariance — Variance of additive noise
1 (default) | nonnegative scalar

2 Objects

2-12

Variance of additive noise ε in the degradation model, specified as a nonnegative scalar. For more
information on the degradation model, see “Exponential Degradation Model” on page 2-18.

You can specify NoiseVariance:

• Using a name-value pair when you create the model
• Using a name-value pair with the restart function
• Using dot notation after model creation

SlopeDetectionLevel — Slope detection level
0.05 (default) | scalar value in the range [0,1] | []

Slope detection level for determining the start of the degradation process, specified as a scalar in the
range [0,1]. This value corresponds to the alpha value in a t-test of slope significance.

To disable the slope detection test, set SlopeDetectionLevel to [].

You can specify SlopeDetectionLevel:

• Using a name-value pair when you create the model
• Using a name-value pair with the restart function
• Using dot notation after model creation

SlopeDetectionInstant — Slope detection time
[] (default) | scalar

This property is read-only.

Slope detection time, which is the instant when a significant slope is detected, specified as a scalar.
The update function sets this value when SlopeDetectionLevel is not empty.

CurrentMeasurement — Latest degradation feature value
scalar

This property is read-only.

Latest degradation feature value supplied to the update function, specified as a scalar.

InitialLifeTimeValue — Initial lifetime variable value
scalar | duration object

This property is read-only.

Initial lifetime variable value when the update function is first called on the model, specified as a
scalar.

When the model detects a slope, the InitialLifeTime value is changed to match the
SlopeDetectionInstant value.

CurrentLifeTimeValue — Current lifetime variable value
scalar | duration object

This property is read-only.

Latest lifetime variable value supplied to the update function, specified as a scalar.

 exponentialDegradationModel

2-13

LifeTimeVariable — Lifetime variable
"" (default) | string

Lifetime variable, specified as a string that contains a valid MATLAB variable name or "".

When you train the model using the fit function, if your training data is a:

• table, then LifeTimeVariable must match one of the variable names in the table
• timetable, then LifeTimeVariable one of the variable names in the table or the dimension

name of the time variable, data.Properties.DimensionNames{1}

You can specify LifeTimeVariable:

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Using dot notation after model creation

LifeTimeUnit — Lifetime variable units
"" (default) | string

Lifetime variable units, specified as a string.

The units of the lifetime variable do not need to be time-based. The life of the test component can be
measured in terms of a usage variable, such as distance traveled (miles) or fuel consumed (gallons).

DataVariables — Degradation variable name
"" (default) | string

Degradation variable name, specified as a string that contains a valid MATLAB variable name.
Degradation models have only one data variable.

You can specify DataVariables:

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Using dot notation after model creation

UseParallel — Flag for using parallel computing
false (default) | true

Flag for using parallel computing when fitting prior values from data, specified as either true or
false.

You can specify UseParallel:

• Using a name-value pair when you create the model
• Using a name-value pair with the restart function
• Using dot notation after model creation

UserData — Additional model information
[] (default) | any data type or format

Additional model information for bookkeeping purposes, specified as any data type or format. The
model does not use this information.

2 Objects

2-14

You can specify UserData:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Object Functions
fit Estimate parameters of remaining useful life model using historical data
predictRUL Estimate remaining useful life for a test component
update Update posterior parameter distribution of degradation remaining useful life model
restart Reset remaining useful life degradation model

Examples

Train Exponential Degradation Model

Load training data.

load('expTrainVectors.mat')

The training data is a cell array of column vectors. Each column vector is a degradation feature
profile for a component.

Create an exponential degradation model with default settings.

mdl = exponentialDegradationModel;

Train the degradation model using the training data.

fit(mdl,expTrainVectors)

Create Exponential Degradation Model with Known Priors

Create an exponential degradation model, and configure it with a known prior distribution.

mdl = exponentialDegradationModel('Theta',0.5,'ThetaVariance',0.003,...
 'Beta',0.3,'BetaVariance',0.002,...
 'Rho',0.1);

The specified prior distribution parameters are stored in the Prior property of the model.

mdl.Prior

ans = struct with fields:
 Theta: 0.5000
 ThetaVariance: 0.0030
 Beta: 0.3000
 BetaVariance: 0.0020
 Rho: 0.1000

The current posterior distribution of the model is also set to match the specified prior distribution.
For example, check the posterior value of the correlation parameter.

 exponentialDegradationModel

2-15

mdl.Rho

ans = 0.1000

Train Exponential Degradation Model Using Tabular Data

Load training data.

load('expTrainTables.mat')

The training data is a cell array of tables. Each table is a degradation feature profile for a component.
Each profile consists of life time measurements in the "Time" variable and corresponding
degradation feature measurements in the "Condition" variable.

Create a exponential degradation model with default settings.

mdl = exponentialDegradationModel;

Train the degradation model using the training data. Specify the names of the life time and data
variables.

fit(mdl,expTrainTables,"Time","Condition")

Predict RUL Using Exponential Degradation Model

Load training data.

load('expTrainTables.mat')

The training data is a cell array of tables. Each table is a degradation feature profile for a component.
Each profile consists of life time measurements in the "Hours" variable and corresponding
degradation feature measurements in the "Condition" variable.

Create an exponential degradation model, specifying the life time variable units.

mdl = exponentialDegradationModel('LifeTimeUnit',"hours");

Train the degradation model using the training data. Specify the names of the life time and data
variables.

fit(mdl,expTrainTables,"Time","Condition")

Load testing data, which is a run-to-failure degradation profile for a test component. The test data is a
table with the same life time and data variables as the training data.

load('expTestData.mat')

Based on knowledge of the degradation feature limits, define a threshold condition indicator value
that indicates the end-of-life of a component.

threshold = 500;

Assume that you measure the component condition indicator every hour for 150 hours. Update the
trained degradation model with each measurement. Then, predict the remaining useful life of the

2 Objects

2-16

component at 150 hours. The RUL is the forecasted time at which the degradation feature will pass
the specified threshold.

for t = 1:150
 update(mdl,expTestData(t,:))
end
estRUL = predictRUL(mdl,threshold)

estRUL = duration
 136.45 hr

The estimated RUL is around 137 hours, which indicates a total predicted life span of 287 hours.

Update Exponential Degradation Model and Predict RUL

Load observation data.

load('expTestData.mat')

For this example, assume that the training data is not historical data, but rather real-time
observations of the component condition.

Based on knowledge of the degradation feature limits, define a threshold condition indicator value
that indicates the end-of-life of a component.

threshold = 500;

Create an exponential degradation model arbitrary prior distribution data and a specified noise
variance. Also, specify the life time and data variable names for the observation data.

mdl = exponentialDegradationModel('Theta',1,'ThetaVariance',1e6,...
 'Beta',1,'BetaVariance',1e6,...
 'NoiseVariance',0.003,...
 'LifeTimeVariable',"Time",'DataVariables',"Condition",...
 'LifeTimeUnit',"hours");

Observe the component condition for 100 hours, updating the degradation model after each
observation.

for i=1:100
 update(mdl,expTestData(i,:));
end

After 100 hours, predict the RUL of the component using the current life time value stored in the
model. Also, obtain the confidence interval associated with the estimated RUL.

estRUL = predictRUL(mdl,threshold)

estRUL = duration
 221.38 hr

The estimated RUL is about 234 hours, which indicates a total predicted life span of 334 hours.

 exponentialDegradationModel

2-17

Algorithms
Exponential Degradation Model

The exponentialDegradationModel object implements the following continuous-time exponential
degradation model [1]:

S t = ϕ + θ t e β t t + ε t − σ2
2

where:

• ϕ is the model intercept, which is constant. You can initialize ϕ as the lower or upper bound on the
feasible region of the degradation variable using Phi. If the sign of θ is:

• Positive, then ϕ is a lower bound.
• Negative, then ϕ is an upper bound.

• θ(t) is a random variable modeled as a lognormal distribution with mean Theta and variance
ThetaVariance.

• β(t) is a random variable modeled as a Gaussian distribution with mean Beta and variance
BetaVariance.

• ε(t) is the model additive noise and is modeled as a normal distribution with zero mean and
variance NoiseVariance.

• σ2 is equal to NoiseVariance.

References
[1] Gebraeel, Nagi. "Sensory-Updated Residual Life Distributions for Components with Exponential

Degradation Patterns." IEEE Transactions on Automation Science and Engineering. Vol. 3,
Number 4, 2006, pp. 382–393.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predictRUL, update, and restart commands support code generation with MATLAB Coder
for this RUL model type.

• Before generating code that uses this model, you must save the model using
saveRULModelForCoder. For an example, see “Generate Code for Predicting Remaining Useful
Life”.

• In addition to its read-only properties, the following properties cannot be changed at run time:

• LifeTimeVariable
• LifeTimeUnit
• DataVariables

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

2 Objects

2-18

To evaluate these models in parallel, set the UseParallel property to true.

See Also
Functions
fit | linearDegradationModel | predictRUL | update

Topics
“Update RUL Prediction as Data Arrives”
“RUL Estimation Using RUL Estimator Models”

Introduced in R2018a

 exponentialDegradationModel

2-19

fileEnsembleDatastore
Manage ensemble data in custom file format

Description
A fileEnsembleDatastore object is a datastore specialized for use in developing algorithms for
condition monitoring and predictive maintenance using measured data.

An ensemble is a collection of member data stored in a collection of files. The
fileEnsembleDatastore object specifies the data variables, independent variables, and condition
variables in the ensemble. You provide functions that tell the fileEnsembleDatastore object how
to read each type of variable from the collection of files. Therefore, you can use
fileEnsembleDatastore to manage ensemble data stored in any file format or configuration of
variables.

The data for a fileEnsembleDatastore object can be stored at any location supported by MATLAB
datastores, including remote locations, such as cloud storage using Amazon S3 (Simple Storage
Service), Windows Azure Blob Storage, and Hadoop Distributed File System (HDFS).

For a detailed example illustrating the use of a file ensemble datastore, see “File Ensemble Datastore
With Measured Data”. For general information about data ensembles in Predictive Maintenance
Toolbox, see “Data Ensembles for Condition Monitoring and Predictive Maintenance”.

Creation

Syntax
fensemble = fileEnsembleDatastore(location,extension)
fensemble = fileEnsembleDatastore(location,extension,Name,Value)

Description

fensemble = fileEnsembleDatastore(location,extension) creates a
fileEnsembleDatastore object that points to data at the file path specified by location and
having the specified file extension. Set properties of the object to specify the functions for reading
from and writing to the ensemble datastore.

fensemble = fileEnsembleDatastore(location,extension,Name,Value) specifies
additional properties on page 2-21 of the object using one or more name-value pair arguments. For
example, using 'ConditionVariables',["FaultCond";"ID"] specifies the condition variables
when you create the object.

Input Arguments

location — Files or folders
string | character vector | string array | cell array of character vectors

2 Objects

2-20

Files or folders from which to read ensemble data, specified as a string, character vector, string array,
or cell array of character vectors. If the files are not in the current folder, then location must
contain full or relative paths.

If you specify a folder, then fileEnsembleDatastore uses all files in that folder with the extension
specified by extension. Alternatively, specify an explicit list of files to include. You can also use the
wildcard character (*) when specifying location. This character indicates that all matching files or
all files in the matching folders are included in the datastore.

The file path can be any location supported by MATLAB datastores, including an IRI path pointing to
a remote location, such as cloud storage using Amazon S3 (Simple Storage Service), Windows Azure
Blob Storage, and Hadoop Distributed File System (HDFS). For more information about working with
remote data in MATLAB, see “Work with Remote Data”.
Example: pwd + "\simResults"
Example: {'C:\dir\data\file1.xls','C:\dir\data\file2.xlsx'}
Example: "../dir/data/*.mat"

extension — File extension
string | character vector | string vector

File extension for files in the datastore, specified as a string or a character vector, such as ".mat" or
'.csv'.

If the datastore contains files having more than one extension, specify them as a string vector, such
as [".xls",".xlsx"]. The functions that you supply for the ReadFcn and WriteToMemberFcn
properties must be able to interact with all specified file types.

Properties
ReadFcn — Function for reading all selected variables
[] (default) | function handle

Function for reading all selected variables from the ensemble, specified as a handle to a function you
provide. You write a function that instructs the software how to read variables from a data file
containing a member of your ensemble. The function has:

• Two inputs, a file name (string), and the names of signals (string vector) to load from the file
• One output, a table row with table variables for each independent variable

When you specify ReadFcn, the software uses this function to read all selected variables from the
ensemble, regardless of whether they are named in DataVariables, IndependentVariables, or
ConditionVariables.

For example, suppose that you write the following function, readVars, for reading variables from
your files. This function creates a table containing the variables in a data file that match those in the
input string vector, variables.

function data = readVars(filename,variables)
data = table();
mfile = matfile(filename); % Allows partial loading
for ct=1:numel(variables)
 val = mfile.(variables{ct});

 fileEnsembleDatastore

2-21

 if numel(val) > 1
 val = {val};
 end
 data.(variables{ct}) = val;
end
end

Save the function in a MATLAB file in the current folder or on the path. Then, if you create a
fileEnsembleDatastore called fensemble, set ReadFcn as follows.

fensemble.ReadFcn = @readVars;

When you call read(fensemble), the software uses readVars to read all the variables in the
SelectedVariables property of the ensemble datastore. You must set this property to read data
from a fileEnsembleDatastore member. Otherwise, read generates an error.

WriteToMemberFcn — Function for adding data
[] (default) | function handle

Function for writing data to the last-read member of the ensemble, specified as a handle to a function
you provide. You write a function that instructs the software how to write variables to a data file
containing a member of your ensemble. The function has:

• Two inputs, a file name (string), and a data structure whose field names are the data variables to
write, and whose values are the corresponding values

• No outputs

For example, suppose that you write the following function, writeNewData, for writing data to your
files. This function writes an input data structure to the specified data file.

function writeNewData(filename,data)
save(filename, '-append', '-struct', 'structData');
end

Store writeNewData in a MATLAB file in the current folder or on the path. Then, if you create a
fileEnsembleDatastore called fensemble, set WriteToMemberFcn as follows:

fensemble.WriteToMemberFcn = @writeNewData;

When you call the writeToLastMemberRead command on fensemble, the software uses
writeNewData to add the new data to the data file of the last-read ensemble member. You must set
this property to add data to a fileEnsembleDatastore member. Otherwise,
writeToLastMemberRead generates an error.

DataVariables — Data variables in the ensemble
[] (default) | string array

Data variables in the ensemble, specified as a string array. Data variables are the main content of the
members of an ensemble. Data variables can include measured data or derived data for analysis and
development of predictive maintenance algorithms. For example, your data variables might include
measured or simulated vibration signals and derived values such as mean vibration value or peak
vibration frequency. In practice, your data variables, independent variables, and condition variables
are all distinct sets of variables.

You can also specify DataVariables using a cell array of character vectors, such as
{'Vibration';'Tacho'}, but the variable names are always stored as a string array,

2 Objects

2-22

["Vibration";"Tacho"]. If you specify a matrix of variable names, the matrix is flattened to a
column vector.

IndependentVariables — Independent variables in the ensemble
[] (default) | string array

Independent variables in the ensemble, specified as a string array. You typically use independent
variables to order the members of an ensemble. Examples are timestamps, number of operating
hours, or miles driven. Set this property to the names of such variables in your ensemble. In practice,
your data variables, independent variables, and condition variables are all distinct sets of variables.

You can also specify IndependentVariables using a cell array of character vectors, such as
{'Time';'Age'}, but the variable names are always stored as a string array, ["Time";"Age"]. If
you specify a matrix of variable names, the matrix is flattened to a column vector.

ConditionVariables — Condition variables in the ensemble
[] (default) | string array

Condition variables in the ensemble, specified as a string array. Use condition variables to label the
members in a ensemble according to the fault condition or other operating condition under which the
ensemble member was collected. In practice, your data variables, independent variables, and
condition variables are all distinct sets of variables.

You can also specify ConditionVariables using a cell array of character vectors, such as
{'GearFault';'Temperature'}, but the variable names are always stored as a string array,
["GearFault";"Temperature"]. If you specify a matrix of variable names, the matrix is flattened
to a column vector.

SelectedVariables — Variables to read
[] (default) | string array

Variables to read from the ensemble, specified as a string array. Use this property to specify which
variables are extracted to the MATLAB workspace when you use the read command to read data
from the current member ensemble. read returns a table row containing a table variable for each
name specified in SelectedVariables. For example, suppose that you have an ensemble,
fensemble, that contains six variables, and you want to read only two of them, Vibration and
FaultState. Set the SelectedVariables property and call read:

fensemble.SelectedVariables = ["Vibration";"FaultState"];
data = read(fensemble)

SelectedVariables can be any combination of the variables in the DataVariables,
ConditionVariables, and IndependentVariables properties. If SelectedVariables is empty,
read generates an error.

You can specify SelectedVariables using a cell array of character vectors, such as
{'Vibration';'Tacho'}, but the variable names are always stored as a string array,
["Vibration";"Tacho"]. If you specify a matrix of variable names, the matrix is flattened to a
column vector.

ReadSize — Number of members to read
1 (default) | positive integer

Number of members to read from the ensemble datastore at once, specified as a positive integer that
is smaller than the total number of members in the ensemble. By default, the read command returns

 fileEnsembleDatastore

2-23

a one-row table containing data from one ensemble member. To read data from multiple members in a
single read operation, set this property to an integer value greater than one. For example, if
ReadSize = 3, then read returns a three-row table where each row contains data from a different
ensemble member. If fewer than ReadSize members are unread, then read returns a table with as
many rows as there are remaining members.

The ensemble datastore property LastMemberRead contains the names of all files read during the
most recent read operation. Thus, for instance, if ReadSize = 3, then a read operation sets
LastMemberRead to a string vector containing three file names.

When you use writeToLastMemberRead, specify the data to write as a table with a number of rows
equal to ReadSize. The writeToLastMemberRead command updates the members specified by
LastMemberRead, writing one table row to each specified file.

Changing the ReadSize property also resets the ensemble to its unread state. For instance, suppose
that you read some ensemble members one at a time (ReadSize = 1), and then change ReadSize to
3. The next read operation returns data from the first three ensemble members.

NumMembers — Number of members in ensemble
positive integer

This property is read-only.

Number of members in the ensemble, specified as a positive integer.

LastMemberRead — File name of last ensemble member read
"" (default) | string | string array

This property is read-only.

File name of last ensemble member read into the MATLAB workspace, specified as a string. When
you use the read command to read data from an ensemble datastore, the software determines which
ensemble member to read next, and reads data from the corresponding file. The LastMemberRead
property contains the path to the most recently read file. When the ensemble datastore has not yet
been read, or has been reset, LastMemberRead is an empty string.

When you call writeToLastMemberRead to add data back to the ensemble datastore, that function
writes to the file specified in LastMemberRead.

By default, read reads data from one ensemble member at a time (the ReadSize property of the
ensemble datastore is 1). When ReadSize > 1, LastMemberRead is a string array containing the
paths to all files read in the most recent read operation.

Files — List of files in ensemble datastore
string vector

This property is read-only.

List of files in the ensemble datastore, specified as a column string vector of length NumMembers.
Each entry contains the full path to a file in the datastore. The files are in the order in which the read
command reads ensemble members.
Example: ["C:\Data\Data_01.csv"; "C:\Data\Data_02.csv"; "C:\Data\Data_03.csv"]

2 Objects

2-24

Object Functions
The read, writeToLastMemberRead, and subset functions are specialized for Predictive
Maintenance Toolbox ensemble data. Other functions, such as reset and hasdata, are identical to
those used with datastore objects in MATLAB. To transfer all the member data into a table or cell
array with a single command, use readall. To extract specific ensemble members into a smaller or
more specialized ensemble datastore, use subset. To partition an ensemble datastore, use the
partition(ds,n,index) syntax of the partition function.
read Read member data from an ensemble datastore
writeToLastMemberRead Write data to member of an ensemble datastore
subset Create new ensemble datastore from subset of existing ensemble

datastore
reset Reset datastore to initial state
hasdata Determine if data is available to read
progress Determine how much data has been read
readall Read all data in datastore
numpartitions Number of datastore partitions
partition Partition a datastore
tall Create tall array
isPartitionable Determine whether datastore is partitionable
isShuffleable Determine whether datastore is shuffleable

Examples

Create and Configure File Ensemble Datastore

Create a file ensemble datastore for data stored in MATLAB® files, and configure it with functions
that tell the software how to read from and write to the datastore.

For this example, you have two data files containing healthy operating data from a bearing system,
baseline_01.mat and baseline_02.mat. You also have three data files containing faulty data
from the same system, FaultData_01.mat, FaultData_02.mat, and FaultData_03.mat.

unzip fileEnsData.zip % extract compressed files
location = pwd;
extension = '.mat';
fensemble = fileEnsembleDatastore(location,extension);

Before you can interact with data in the ensemble, you must create functions that tell the software
how to process the data files to read variables into the MATLAB workspace and to write data back to
the files. Save these functions to a location on the file path. For this example, use the following
supplied functions:

• readBearingData — Extract requested variables from a structure, bearing, and other variables
stored in the file. This function also parses the filename for the fault status of the data. The
function returns a table row containing one table variable for each requested variable.

• writeBearingData — Take a structure and write its variables to a data file as individual stored
variables.

fensemble.ReadFcn = @readBearingData;
fensemble.WriteToMemberFcn = @writeBearingData;

 fileEnsembleDatastore

2-25

Finally, set properties of the ensemble to identify data variables, condition variables, and selected
variables for reading. For this example, the variables in the data file are gs, sr, load, and rate.
Suppose that you only need to read the fault label, gs, and sr. Set these variables as the selected
variables.

fensemble.DataVariables = ["gs";"sr";"load";"rate"];
fensemble.ConditionVariables = ["label"];
fensemble.SelectedVariables = ["label";"gs";"sr"];

Examine the ensemble. The functions and the variable names are assigned to the appropriate
properties.

fensemble

fensemble =
 fileEnsembleDatastore with properties:

 ReadFcn: @readBearingData
 WriteToMemberFcn: @writeBearingData
 DataVariables: [4x1 string]
 IndependentVariables: [0x0 string]
 ConditionVariables: "label"
 SelectedVariables: [3x1 string]
 ReadSize: 1
 NumMembers: 5
 LastMemberRead: [0x0 string]
 Files: [5x1 string]

These functions that you assigned tell the read and writeToLastMemberRead commands how to
interact with the data files that make up the ensemble. For example, when you call the read
command, it uses readBearingData to read all the variables in fensemble.SelectedVariables.
For a more detailed example, see “File Ensemble Datastore With Measured Data”.

Read from and Write to a File Ensemble Datastore

Create a file ensemble datastore for data stored in MATLAB files, and configure it with functions that
tell the software how to read from and write to the datastore. (For more details about configuring file
ensemble datastores, see “File Ensemble Datastore With Measured Data”.)

% Create ensemble datastore that points to datafiles in current folder
unzip fileEnsData.zip % extract compressed files
location = pwd;
extension = '.mat';
fensemble = fileEnsembleDatastore(location,extension);

% Specify data and condition variables
fensemble.DataVariables = ["gs";"sr";"load";"rate"];
fensemble.ConditionVariables = "label";

% Configure with functions for reading and writing variable data
addpath(fullfile(matlabroot,'examples','predmaint','main')) % Make sure functions are on path
fensemble.ReadFcn = @readBearingData;
fensemble.WriteToMemberFcn = @writeBearingData;

The functions tell the read and writeToLastMemberRead commands how to interact with the data
files that make up the ensemble. Thus, when you call the read command, it uses readBearingData

2 Objects

2-26

to read all the variables in fensemble.SelectedVariables. For this example, readBearingData
extracts requested variables from a structure, bearing, and other variables stored in the file. It also
parses the filename for the fault status of the data.

Specify variables to read, and read them from the first member of the ensemble.

fensemble.SelectedVariables = ["gs";"load";"label"];
data = read(fensemble)

data=1×3 table
 label gs load
 ________ _______________ ____

 "Faulty" {5000x1 double} 0

You can now process the data from the member as needed. For this example, compute the average
value of the signal stored in the variable gs. Extract the data from the table returned by read.

gsdata = data.gs{1};
gsmean = mean(gsdata);

You can write the mean value gsmean back to the data file as a new variable. To do so, first expand
the list of data variables in the ensemble to include a variable for the new value. Call the new variable
gsMean.

fensemble.DataVariables = [fensemble.DataVariables;"gsMean"]

fensemble =
 fileEnsembleDatastore with properties:

 ReadFcn: @readBearingData
 WriteToMemberFcn: @writeBearingData
 DataVariables: [5x1 string]
 IndependentVariables: [0x0 string]
 ConditionVariables: "label"
 SelectedVariables: [3x1 string]
 ReadSize: 1
 NumMembers: 5
 LastMemberRead: "C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\25\tp42ac2ec4\predmaint-ex34165887\FaultData_01.mat"
 Files: [5x1 string]

Next, write the derived mean value to the file corresponding to the last-read ensemble member. (See
“Data Ensembles for Condition Monitoring and Predictive Maintenance”.) When you call
writeToLastMemberRead, it converts the data to a structure and calls
fensemble.WriteToMemberFcn to write the data to the file.

writeToLastMemberRead(fensemble,'gsMean',gsmean);

Calling read again advances the last-read-member indicator to the next file in the ensemble and
reads the data from that file.

data = read(fensemble)

data=1×3 table
 label gs load
 ________ _______________ ____

 fileEnsembleDatastore

2-27

 "Faulty" {5000x1 double} 50

You can confirm that this data is from a different member by examining the load variable in the
table. Here, its value is 50, while in the previously read member, it was 0.

You can repeat the processing steps to compute and append the mean for this ensemble member. In
practice, it is more useful to automate the process of reading, processing, and writing data. To do so,
reset the ensemble to a state in which no data has been read. Then loop through the ensemble and
perform the read, process, and write steps for each member.

reset(fensemble)
while hasdata(fensemble)
 data = read(fensemble);
 gsdata = data.gs{1};
 gsmean = mean(gsdata);
 writeToLastMemberRead(fensemble,'gsMean',gsmean);
end

The hasdata command returns false when every member of the ensemble has been read. Now,
each data file in the ensemble includes the gsMean variable derived from the data gs in that file. You
can use techniques like this loop to extract and process data from your ensemble files as you develop
a predictive-maintenance algorithm. For an example illustrating in more detail the use of a file
ensemble datastore in the algorithm-development process, see “Rolling Element Bearing Fault
Diagnosis”. The example also shows how to use Parallel Computing Toolbox™ to speed up the
processing of large data ensembles.

To confirm that the derived variable is present in the file ensemble datastore, read it from the first
and second ensemble members. To do so, reset the ensemble again, and add the new variable to the
selected variables. In practice, after you have computed derived values, it can be useful to read only
those values without rereading the unprocessed data, which can take significant space in memory.
For this example, read selected variables that include the new variable, gsMean, but do not include
the unprocessed data, gs.

reset(fensemble)
fensemble.SelectedVariables = ["label";"load";"gsMean"];
data1 = read(fensemble)

data1=1×3 table
 label load gsMean
 ________ ____ ________

 "Faulty" 0 -0.22648

data2 = read(fensemble)

data2=1×3 table
 label load gsMean
 ________ ____ ________

 "Faulty" 50 -0.22937

rmpath(fullfile(matlabroot,'examples','predmaint','main')) % Reset path

2 Objects

2-28

Compatibility Considerations
DataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcn properties
will be removed
Not recommended starting in R2018b

The DataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcn properties
will be removed in a future release. Use the ReadFcn property instead.

The ReadFcn property, introduced in R2018b, lets you specify one function to read all variable types
from your ensemble datastore. Formerly, you had to designate functions separately for data variables,
independent variables, and condition variables. An advantage of using ReadFcn is that the read
operation needs to access each member file only once to read all the variables. With separate
functions for each variable type, read opens the file up to three times to read all variable types. Thus,
designating a single ReadFcn is a more efficient way to access the datastore.

Update Code

To update your code to use the new property:

1 Rewrite your fileEnsembleDatastore read functions into one new function that reads
variables of all types. (See “Create and Configure File Ensemble Datastore” on page 2-25 for an
example of such a function.)

2 Set DataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcn to []
to clear them.

3 Set ReadFcn to the new function.

See Also
generateSimulationEnsemble | simulationEnsembleDatastore

Topics
“Data Ensembles for Condition Monitoring and Predictive Maintenance”
“File Ensemble Datastore With Measured Data”
“File Ensemble Datastore Using Data in Text Files”

Introduced in R2018a

 fileEnsembleDatastore

2-29

hashSimilarityModel
Hashed-feature similarity model for estimating remaining useful life

Description
Use hashSimilarityModel to estimate the remaining useful life (RUL) of a component using a
hashed-feature similarity model. This model is useful when you have run-to-failure degradation path
histories for an ensemble of similar components, such as multiple machines manufactured to the
same specifications, and the data set is large. The hashed-feature similarity model transforms the
historical degradation path data for each ensemble member into a series of hashed-features, such as
the mean, power, minimum, or maximum values for the data. You can then compute the hashed
features of a test component and compare them to the hashed features of the ensemble data
members.

To configure a hashSimilarityModel object, use fit, which computes and stores the hashed
feature values of the ensemble data members. Once you configure the parameters of your similarity
model, you can then predict the remaining useful life of similar components using predictRUL. For
similarity models, the RUL of the test component is estimated as the median statistic of the lifetime
span of the most similar components minus the current lifetime value of the test component. For a
basic example illustrating RUL prediction, see “Update RUL Prediction as Data Arrives”.

For general information on predicting remaining useful life, see “Models for Predicting Remaining
Useful Life”.

Creation

Syntax
mdl = hashSimilarityModel
mdl = hashSimilarityModel(initModel)
mdl = hashSimilarityModel(___ ,Name,Value)

Description

mdl = hashSimilarityModel creates a hashed-feature similarity model for estimating RUL and
initializes the model with default settings.

mdl = hashSimilarityModel(initModel) creates a hashed-feature similarity model and
initializes the model parameters using an existing hashSimilarityModel object initModel.

mdl = hashSimilarityModel(___ ,Name,Value) specifies user-settable model properties using
name-value pairs. For example, hashSimilarityModel('LifeTimeUnit',"days") creates a
hashed-feature similarity model with that uses days as a lifetime unit. You can specify multiple name-
value pairs. Enclose each property name in quotes.

2 Objects

2-30

Input Arguments

initModel — Hashed-feature similarity model
hashSimilarityModel object

Hashed-feature similarity model, specified as a hashSimilarityModel object.

Properties
HashTable — Hashed feature values
N-by-M array

This property is read-only.

Hashed feature values generated by the fit function, specified as N-by-M array, where M is the
number of ensemble members and N is the number of hashed features. HashTable(i,j) contains
the hashed feature value of jth feature computed for the ith data member.

To specify the method for computing the hashed features, use the Method property of the model.

RegimeSplit — Breakpoints for splitting historical data into multiple regimes
row vector of doubles (default) | [] | row vector of duration objects | row vector of datetime
objects

Breakpoints for splitting historical data into multiple regimes, specified as a row vector of double
values, duration objects, or datetime objects. The row vector of breakpoints must:

• Be in increasing order
• Have units and a format that is compatible with the training data used with the fit function

To use a single regime, specify RegimeSplit as [].

A separate hash table is generated for each regime. The RUL prediction is based on the similarity to
the hashed features in the regime to which the test data belongs. If you change the value of
RegimeSplit, then you must retrain your model using fit.

You can specify RegimeSplit:

• Using a name-value pair when you create the model
• Using dot notation after model creation

LifeSpan — Ensemble member life spans
double vector (default) | vector of duration objects

This property is read-only.

Ensemble member life spans, specified as a double vector or duration object vector and computed
from the ensemble member degradation profiles by the fit function.

NumNearestNeighbors — Number of nearest neighbors for RUL estimation
Inf (default) | finite positive integer

Number of nearest neighbors for RUL estimation, specified as Inf or a finite positive integer. If
NumNearestNeighbors is Inf, then predictRUL uses all the ensemble members during
estimation.

 hashSimilarityModel

2-31

You can specify NumNearestNeighbors:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Method — Hashed feature computation method
"minmaxstd" (default) | function handle

Hashed feature computation method, specified as one of the following:

• "minmaxstd" — Extract the minimum, maximum, and standard deviation of the data. This option
omits observations that contain NaN. When you use this method, HashTable is M-by-3, where M
is the number of ensemble members.

• Function handle — Use a custom function that takes degradation data as a column vector, table,
or timetable, and returns a row vector of features. For example:

mdl.Method = @(x) [mean(x),std(x),kurtosis(x),median(x)]

You can specify Method:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Distance — Distance computation method
"euclidian" (default) | "absolute" | function handle

Distance computation method, specified as one of the following:

• "euclidian" — Use the 2-norm of the difference between hash vectors.
• "absolute" — Use the 1-norm of the difference between hash vectors.
• Function handle — Use a custom function of the form:

D = distanceFunction(xTest,xEnsemble)

Here,

• xTest is a column vector of length N that contains test component hashed features, where N
is the number of hashed features.

• xEnsemble is an M-by-N array of ensemble component hashed features, where M is the
number of ensemble components. xEnsemble(i,:) contains the hashed features for the ith
ensemble member.

• D is a row vector of length M, where D(i) is the distance between the test feature vector and
the feature vector of the ith ensemble member.

You can specify Distance:

• Using a name-value pair when you create the model
• Using dot notation after model creation

IncludeTies — Flag to include ties
true (default) | false

2 Objects

2-32

Flag to include ties, specified as true or false. When IncludeTies is true, the model includes all
neighbors whose distance to the test component data is less than the Kth smallest distance, where K
is equal to NumNearestNeigbors.

You can specify IncludeTies:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Standardize — Flag for standardizing feature data
false (default) | true

Flag for standardizing feature data before generating hashed features, specified as true or false.
When Standardize is true, the feature data is standardized such that feature X becomes (X-
mean(X))/std(X).

You can specify Standardize:

• Using a name-value pair when you create the model
• Using dot notation after model creation

LifeTimeVariable — Lifetime variable
"" (default) | string

Lifetime variable, specified as a string that contains a valid MATLAB variable name or "".

When you train the model using the fit function, if your training data is a:

• table, then LifeTimeVariable must match one of the variable names in the table
• timetable, then LifeTimeVariable one of the variable names in the table or the dimension

name of the time variable, data.Properties.DimensionNames{1}

You can specify LifeTimeVariable:

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Using dot notation after model creation

LifeTimeUnit — Lifetime variable units
"" (default) | string

Lifetime variable units, specified as a string.

The units of the lifetime variable do not need to be time-based. The life of the test component can be
measured in terms of a usage variable, such as distance traveled (miles) or fuel consumed (gallons).

DataVariables — Degradation variable names
"" (default) | string | string array

Degradation variable names, specified as a string or string array. The strings in DataVariables
must be valid MATLAB variable name.

You can specify DataVariables:

 hashSimilarityModel

2-33

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Using dot notation after model creation

UseParallel — Flag for using parallel computing
false (default) | true

Flag for using parallel computing for hash table generation by the fit function, specified as either
true or false.

You can specify UseParallel:

• Using a name-value pair when you create the model
• Using dot notation after model creation

UserData — Additional model information
[] (default) | any data type or format

Additional model information for bookkeeping purposes, specified as any data type or format. The
model does not use this information.

You can specify UserData:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Object Functions
predictRUL Estimate remaining useful life for a test component
fit Estimate parameters of remaining useful life model using historical data
compare Compare test data to historical data ensemble for similarity models

Examples

Train Hash Similarity Model

Load training data.

load('hashTrainVectors.mat')

The training data is a cell array of column vectors. Each column vector is a degradation feature
profile for a component.

Create a hash similarity model with default settings. By default, the hashed features used by the
model are the signal maximum, minimum, and standard deviation values.

mdl = hashSimilarityModel;

Train the similarity model using the training data.

fit(mdl,hashTrainVectors)

2 Objects

2-34

Train Hash Similarity Model Using Tabular Data

Load training data.

load('hashTrainTables.mat')

The training data is a cell array of tables. Each table is a degradation feature profile for a component.
Each profile consists of life time measurements in the "Time" variable and corresponding
degradation feature measurements in the "Condition" variable.

Create a hash similarity model that uses the following values as hashed features:

mdl = hashSimilarityModel('Method',@(x) [mean(x),std(x),kurtosis(x),median(x)]);

Train the similarity model using the training data. Specify the names of the life time and data
variables.

fit(mdl,hashTrainTables,"Time","Condition")

Predict RUL Using Hash Similarity Model

Load training data.

load('hashTrainTables.mat')

The training data is a cell array of tables. Each table is a degradation feature profile for a component.
Each profile consists of life time measurements in the "Time" variable and corresponding
degradation feature measurements in the "Condition" variable.

Create a hash similarity model that uses hours as a life time unit and the following values as hashed
features:

• Mean
• Standard deviation
• Kurtosis
• Median

mdl = hashSimilarityModel('Method',@(x) [mean(x),std(x),kurtosis(x),median(x)],...
 'LifeTimeUnit',"hours");

Train the similarity model using the training data. Specify the names of the life time and data
variables.

fit(mdl,hashTrainTables,"Time","Condition")

Load testing data. The test data contains the degradation feature measurements for a test component
up to the current life time.

load('hashTestData.mat')

Predict the RUL of the test component using the trained similarity model.

estRUL = predictRUL(mdl,hashTestData)

 hashSimilarityModel

2-35

estRUL = duration
 175.69 hr

The estimated RUL for the component is around 176 hours.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To evaluate these models in parallel, set the UseParallel property to true.

See Also
Functions
fit | pairwiseSimilarityModel | predictRUL | residualSimilarityModel

Topics
“Update RUL Prediction as Data Arrives”
“RUL Estimation Using RUL Estimator Models”

Introduced in R2018a

2 Objects

2-36

linearDegradationModel
Linear degradation model for estimating remaining useful life

Description
Use linearDegradationModel to model a linear degradation process for estimating the remaining
useful life (RUL) of a component. Degradation models estimate the RUL by predicting when a
monitored signal will cross a predefined threshold. Linear degradation models are useful when the
monitored signal is a log scale signal or when the component does not experience cumulative
degradation. For more information on the degradation model, see “Linear Degradation Model” on
page 2-44.

To configure a linearDegradationModel object for a specific type of component, you can:

• Estimate the model prior parameters using historical data regarding the health of an ensemble of
similar components, such as multiple machines manufactured to the same specifications. To do so,
use fit.

• Specify the model prior parameters when you create the model based on your knowledge of the
component degradation process.

Once you configure the parameters of your degradation model, you can then predict the remaining
useful life of similar components using predictRUL. For a basic example illustrating RUL prediction
with a degradation model, see “Update RUL Prediction as Data Arrives”.

For general information on predicting remaining useful life, see “Models for Predicting Remaining
Useful Life”.

Creation

Syntax
mdl = linearDegradationModel
mdl = linearDegradationModel(Name,Value)

Description

mdl = linearDegradationModel creates a linear degradation model for estimating RUL and
initializes the model with default settings.

mdl = linearDegradationModel(Name,Value) specifies user-settable model properties using
name-value pairs. For example, linearDegradationModel('NoiseVariance',0.5) creates a
linear degradation model with a model noise variance of 0.5. You can specify multiple name-value
pairs. Enclose each property name in quotes.

 linearDegradationModel

2-37

Properties
Theta — Current mean value of slope parameter
scalar

This property is read-only.

Current mean value of slope parameter θ in the degradation model, specified as a scalar. For more
information on the degradation model, see “Linear Degradation Model” on page 2-44.

You can specify Theta using a name-value pair argument when you:

• Create the model.
• Reset the model using the restart function.

Otherwise, the value of Theta changes when you use the update function.

ThetaVariance — Current variance of slope parameter
nonnegative scalar

This property is read-only.

Current variance of slope parameter θ in the degradation model, specified as a nonnegative scalar.
For more information on the degradation model, see “Linear Degradation Model” on page 2-44.

You can specify ThetaVariance using a name-value pair argument when you:

• Create the model.
• Reset the model using the restart function.

Otherwise, the value of ThetaVariance changes when you use the update function.

Phi — Current intercept value
scalar

Current intercept value ϕ for the degradation model, specified as a scalar. For more information on
the degradation model, see “Linear Degradation Model” on page 2-44.

You can specify Phi using a name-value pair argument when you create the model. Otherwise, the
value of Phi changes when you estimate the model prior using the fit function.

Prior — Prior information about model parameters
structure

Prior information about model parameters, specified as a structure with the following fields:

• Theta — Mean value of slope parameter
• ThetaVariance — Variance of slope parameter

You can specify the fields of Prior:

• When you create the model. When you specify Theta or ThetaVariance at model creation using
name-value pairs, the corresponding field of Prior is also set.

• Using the fit function. In this case, the prior values are derived from the data used to fit the
model.

2 Objects

2-38

• Using the restart function. In this case, the current values of Theta and ThetaVariance are
copied to the corresponding fields of Prior.

• Using dot notation after model creation.

For more information on the degradation model, see “Linear Degradation Model” on page 2-44.

NoiseVariance — Variance of additive noise
1 (default) | nonnegative scalar

Variance of additive noise ε in the degradation model, specified as a nonnegative scalar. For more
information on the degradation model, see “Linear Degradation Model” on page 2-44.

You can specify NoiseVariance:

• Using a name-value pair when you create the model
• Using a name-value pair with the restart function
• Using dot notation after model creation

SlopeDetectionLevel — Slope detection level
0.05 (default) | scalar value in the range [0,1] | []

Slope detection level for determining the start of the degradation process, specified as a scalar in the
range [0,1]. This value corresponds to the alpha value in a t-test of slope significance.

To disable the slope detection test, set SlopeDetectionLevel to [].

You can specify SlopeDetectionLevel:

• Using a name-value pair when you create the model
• Using a name-value pair with the restart function
• Using dot notation after model creation

SlopeDetectionInstant — Slope detection time
[] (default) | scalar

This property is read-only.

Slope detection time, which is the instant when a significant slope is detected, specified as a scalar.
The update function sets this value when SlopeDetectionLevel is not empty.

CurrentMeasurement — Latest degradation feature value
scalar

This property is read-only.

Latest degradation feature value supplied to the update function, specified as a scalar.

InitialLifeTimeValue — Initial lifetime variable value
scalar | duration object

This property is read-only.

Initial lifetime variable value when the update function is first called on the model, specified as a
scalar.

 linearDegradationModel

2-39

When the model detects a slope, the InitialLifeTime value is changed to match the
SlopeDetectionInstant value.

CurrentLifeTimeValue — Current lifetime variable value
scalar | duration object

This property is read-only.

Latest lifetime variable value supplied to the update function, specified as a scalar.

LifeTimeVariable — Lifetime variable
"" (default) | string

Lifetime variable, specified as a string that contains a valid MATLAB variable name or "".

When you train the model using the fit function, if your training data is a:

• table, then LifeTimeVariable must match one of the variable names in the table
• timetable, then LifeTimeVariable one of the variable names in the table or the dimension

name of the time variable, data.Properties.DimensionNames{1}

You can specify LifeTimeVariable:

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Using dot notation after model creation

LifeTimeUnit — Lifetime variable units
"" (default) | string

Lifetime variable units, specified as a string.

The units of the lifetime variable do not need to be time-based. The life of the test component can be
measured in terms of a usage variable, such as distance traveled (miles) or fuel consumed (gallons).

DataVariables — Degradation variable name
"" (default) | string

Degradation variable name, specified as a string that contains a valid MATLAB variable name.
Degradation models have only one data variable.

You can specify DataVariables:

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Using dot notation after model creation

UseParallel — Flag for using parallel computing
false (default) | true

Flag for using parallel computing when fitting prior values from data, specified as either true or
false.

You can specify UseParallel:

2 Objects

2-40

• Using a name-value pair when you create the model
• Using a name-value pair with the restart function
• Using dot notation after model creation

UserData — Additional model information
[] (default) | any data type or format

Additional model information for bookkeeping purposes, specified as any data type or format. The
model does not use this information.

You can specify UserData:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Object Functions
fit Estimate parameters of remaining useful life model using historical data
predictRUL Estimate remaining useful life for a test component
update Update posterior parameter distribution of degradation remaining useful life model
restart Reset remaining useful life degradation model

Examples

Train Linear Degradation Model

Load training data.

load('linTrainVectors.mat')

The training data is a cell array of column vectors. Each column vector is a degradation feature
profile for a component.

Create a linear degradation model with default settings.

mdl = linearDegradationModel;

Train the degradation model using the training data.

fit(mdl,linTrainVectors)

Create Linear Degradation Model with Known Priors

Create a linear degradation model and configure it with a known prior distribution.

mdl = linearDegradationModel('Theta',0.25,'ThetaVariance',0.002);

The specified prior distribution parameters are stored in the Prior property of the model.

mdl.Prior

ans = struct with fields:
 Theta: 0.2500

 linearDegradationModel

2-41

 ThetaVariance: 0.0020

The current posterior distribution of the model is also set to match the specified prior distribution.
For example, check the posterior value of the slope variance.

mdl.ThetaVariance

ans = 0.0020

Train Linear Degradation Model Using Tabular Data

Load training data.

load('linTrainTables.mat')

The training data is a cell array of tables. Each table is a degradation feature profile for a component.
Each profile consists of life time measurements in the "Time" variable and corresponding
degradation feature measurements in the "Condition" variable.

Create a linear degradation model with default settings.

mdl = linearDegradationModel;

Train the degradation model using the training data. Specify the names of the life time and data
variables.

fit(mdl,linTrainTables,"Time","Condition")

Predict RUL Using Linear Degradation Model

Load training data.

load('linTrainTables.mat')

The training data is a cell array of tables. Each table is a degradation feature profile for a component.
Each profile consists of life time measurements in the "Time" variable and corresponding
degradation feature measurements in the "Condition" variable.

Create a linear degradation model, specifying the life time variable units.

mdl = linearDegradationModel('LifeTimeUnit',"hours");

Train the degradation model using the training data. Specify the names of the life time and data
variables.

fit(mdl,linTrainTables,"Time","Condition")

Load testing data, which is a run-to-failure degradation profile for a test component. The test data is a
table with the same life time and data variables as the training data.

load('linTestData.mat','linTestData1')

2 Objects

2-42

Based on knowledge of the degradation feature limits, define a threshold condition indicator value
that indicates the end-of-life of a component.

threshold = 60;

Assume that you measure the component condition indicator after 48 hours. Predict the remaining
useful life of the component at this time using the trained linear degradation model. The RUL is the
forecasted time at which the degradation feature will pass the specified threshold.

estRUL = predictRUL(mdl,linTestData1(48,:),threshold)

estRUL = duration
 112.64 hr

The estimated RUL is around 113 hours, which indicates a total predicted life span of around 161
hours.

Update Linear Degradation Model and Predict RUL

Load observation data.

load('linTestData.mat','linTestData1')

For this example, assume that the training data is not historical data, but rather real-time
observations of the component condition.

Based on knowledge of the degradation feature limits, define a threshold condition indicator value
that indicates the end-of-life of a component.

threshold = 60;

Create a linear degradation model arbitrary prior distribution data and a specified noise variance.
Also, specify the life time and data variable names for the observation data.

mdl = linearDegradationModel('Theta',1,'ThetaVariance',1e6,'NoiseVariance',0.003,...
 'LifeTimeVariable',"Time",'DataVariables',"Condition",...
 'LifeTimeUnit',"hours");

Observe the component condition for 50 hours, updating the degradation model after each
observation.

for i=1:50
 update(mdl,linTestData1(i,:));
end

After 50 hours, predict the RUL of the component using the current life time value stored in the
model.

estRUL = predictRUL(mdl,threshold)

estRUL = duration
 50.301 hr

The estimated RUL is about 50 hours, which indicates a total predicted life span of about 100 hours.

 linearDegradationModel

2-43

Algorithms
Linear Degradation Model

The linearDegradationModel object implements the following continuous-time linear degradation
model [1]:

S t = ϕ + θ t t + ε t

where:

• ϕ is the model intercept, which is constant. You can initialize ϕ as the nominal value of the
degradation variable using Phi.

• θ(t) is the model slope and is modeled as a random variable with a normal distribution with mean
Theta and variance ThetaVariance.

• ε(t) is the model additive noise and is modeled as a normal distribution with zero mean and
variance NoiseVariance.

References
[1] Chakraborty, S., N. Gebraeel, M. Lawley, and H. Wan. "Residual-Life Estimation for Components

with Non-Symmetric Priors." IIE Transactions. Vol. 41, Number 4, 2009, pp. 372–387.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predictRUL, update, and restart commands support code generation with MATLAB Coder
for this RUL model type.

• Before generating code that uses this model, you must save the model using
saveRULModelForCoder. For an example, see “Generate Code for Predicting Remaining Useful
Life”.

• In addition to its read-only properties, the following properties cannot be changed at run time:

• LifeTimeVariable
• LifeTimeUnit
• DataVariables

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To evaluate these models in parallel, set the UseParallel property to true.

See Also
Functions
exponentialDegradationModel | fit | predictRUL | update

2 Objects

2-44

Topics
“Update RUL Prediction as Data Arrives”
“RUL Estimation Using RUL Estimator Models”

Introduced in R2018a

 linearDegradationModel

2-45

pairwiseSimilarityModel
Pairwise comparison-based similarity model for estimating remaining useful life

Description
Use pairwiseSimilarityModel to estimate the remaining useful life (RUL) of a component using a
pairwise comparison-based similarity model. This model compares the degradation profile of a test
component directly to the degradation path histories for an ensemble of similar components, such as
multiple machines manufactured to the same specifications. The similarity of the test component to
the ensemble members is a function of the distance between the degradation profile and the
ensemble member profile, which is computed using correlation or dynamic time warping.

To configure a pairwiseSimilarityModel object, use fit. Once you configure the parameters of
your similarity model, you can then predict the remaining useful life of similar components using
predictRUL. For similarity models, the RUL of the test component is estimated as the median
statistic of the lifetime span of the most similar components minus the current lifetime value of the
test component. For a basic example illustrating RUL prediction, see “Update RUL Prediction as Data
Arrives”.

For general information on predicting remaining useful life, see “Models for Predicting Remaining
Useful Life”.

Creation

Syntax
mdl = pairwiseSimilarityModel
mdl = pairwiseSimilarityModel(initModel)
mdl = pairwiseSimilarityModel(___ ,Name,Value)

Description

mdl = pairwiseSimilarityModel creates a pairwise comparison-based similarity model for
estimating RUL and initializes the model with default settings.

mdl = pairwiseSimilarityModel(initModel) creates a pairwise comparison-based similarity
model and initializes the model parameters using an existing pairwiseSimilarityModel object
initModel.

mdl = pairwiseSimilarityModel(___ ,Name,Value) specifies user-settable model properties
using name-value pairs. For example, hashSimilarityModel('LifeTimeUnit',"days") creates
a pairwise comparison-based similarity model that uses days as a lifetime unit. You can specify
multiple name-value pairs. Enclose each property name in quotes.

Input Arguments

initModel — Pairwise comparison-based similarity model
pairwiseSimilarityModel object

2 Objects

2-46

Pairwise comparison-based similarity model, specified as a pairwiseSimilarityModel object.

Properties
Method — Time series distance computation method
"correlation" (default) | "dtw"

Time series distance computation method, specified as one of the following:

• "correlation" — Measure distance using correlation
• "dtw" — Compute distance using dynamic time warping. For more information, see dtw.

You can specify Method:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Distance — Distance formula for "dtw"
"euclidian" (default) | "absolute"

Distance formula for "dtw" distance computation method, specified as one of the following:

• "euclidian" — Use the 2-norm of the difference between residuals.
• "absolute" — Use the 1-norm of the difference between residuals.

You can specify Distance:

• Using a name-value pair when you create the model
• Using dot notation after model creation

HistorySpan — Lifetime span of historical data
Inf (default) | positive scalar | duration object

Lifetime span of historical data for computing similarity, specified as a positive scalar or duration
object. When computing similarity, the model uses historical data from lifetime (t-HistorySpan) to
lifetime t, where t is the current lifetime.

You can specify HistorySpan:

• Using a name-value pair when you create the model
• Using dot notation after model creation

WithinRangeRatio — Factor determining ensemble member exclusion rule
1 (default) | scalar from 0 through 1

Factor determining ensemble member exclusion rule for similarity computation, specified as a scalar
from 0 through 1. WithinRangeRatio is used when the length of the test data and the length of the
ensemble member data do not match, which happens near end-of-lifetime values of historical data.
When WithinRangeRatio is 1, then there is no exclusion of ensemble members.

Suppose that the length of the shorter data is P and the length of the longer data is Q. Then, a
similarity test is performed only if Q(1-WithinRangeRatio) <= P <= Q. Otherwise, the ensemble
member is ignored.

 pairwiseSimilarityModel

2-47

You can specify WithinRangeRatio:

• Using a name-value pair when you create the model
• Using dot notation after model creation

LifeSpan — Ensemble member life spans
double vector (default) | vector of duration objects

This property is read-only.

Ensemble member life spans, specified as a double vector or duration object vector and computed
from the ensemble member degradation profiles by the fit function.

NumNearestNeighbors — Number of nearest neighbors for RUL estimation
Inf (default) | finite positive integer

Number of nearest neighbors for RUL estimation, specified as Inf or a finite positive integer. If
NumNearestNeighbors is Inf, then predictRUL uses all the ensemble members during
estimation.

You can specify NumNearestNeighbors:

• Using a name-value pair when you create the model
• Using dot notation after model creation

IncludeTies — Flag to include ties
true (default) | false

Flag to include ties, specified as true or false. When IncludeTies is true, the model includes all
neighbors whose distance to the test component data is less than the Kth smallest distance, where K
is equal to NumNearestNeigbors.

You can specify IncludeTies:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Standardize — Flag for standardizing feature data
false (default) | true | 'time-varying'

Flag for standardizing feature data before computing distance, specified as true, false, or 'time-
varying'.

When Standardize is true, the feature data is standardized such that feature X becomes (X-
mean(X))/std(X).

When Standardize is 'time-varying', the feature data is standardized such that feature X(t)
becomes (X(t) -M(t)) / S(t). Here, M(t) and S(t) are running estimates of the mean and standard
deviation of the data.

You can specify Standardize:

• Using a name-value pair when you create the model
• Using dot notation after model creation

2 Objects

2-48

LifeTimeVariable — Lifetime variable
"" (default) | string

Lifetime variable, specified as a string that contains a valid MATLAB variable name or "".

When you train the model using the fit function, if your training data is a:

• table, then LifeTimeVariable must match one of the variable names in the table
• timetable, then LifeTimeVariable one of the variable names in the table or the dimension

name of the time variable, data.Properties.DimensionNames{1}

You can specify LifeTimeVariable:

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Using dot notation after model creation

LifeTimeUnit — Lifetime variable units
"" (default) | string

Lifetime variable units, specified as a string.

The units of the lifetime variable do not need to be time-based. The life of the test component can be
measured in terms of a usage variable, such as distance traveled (miles) or fuel consumed (gallons).

DataVariables — Degradation variable names
"" (default) | string | string array

Degradation variable names, specified as a string or string array. The strings in DataVariables
must be valid MATLAB variable names.

You can specify DataVariables:

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Using dot notation after model creation

UseParallel — Flag for using parallel computing
false (default) | true

Flag for using parallel computing for nearest-neighbor searching, specified as either true or false.

You can specify UseParallel:

• Using a name-value pair when you create the model
• Using dot notation after model creation

UserData — Additional model information
[] (default) | any data type or format

Additional model information for bookkeeping purposes, specified as any data type or format. The
model does not use this information.

You can specify UserData:

 pairwiseSimilarityModel

2-49

• Using a name-value pair when you create the model
• Using dot notation after model creation

Object Functions
predictRUL Estimate remaining useful life for a test component
fit Estimate parameters of remaining useful life model using historical data
compare Compare test data to historical data ensemble for similarity models

Examples

Train Pairwise Similarity Model

Load training data.

load('pairwiseTrainVectors.mat')

The training data is a cell array of column vectors. Each column vector is a degradation feature
profile for a component.

Create a pairwise similarity model with default settings.

mdl = pairwiseSimilarityModel;

Train the similarity model using the training data.

fit(mdl,pairwiseTrainVectors)

Train Pairwise Similarity Model Using Tabular Data

Load training data.

load('pairwiseTrainTables.mat')

The training data is a cell array of tables. Each table is a degradation feature profile for a component.
Each profile consists of life time measurements in the "Time" variable and corresponding
degradation feature measurements in the "Condition" variable.

Create a pairwise similarity model that computes distance using dynamic time warping with an
absolute distance metric.

mdl = pairwiseSimilarityModel('Method',"dtw",'Distance',"absolute");

Train the similarity model using the training data. Specify the names of the life time and data
variables.

fit(mdl,pairwiseTrainTables,"Time","Condition")

2 Objects

2-50

Predict RUL Using Pairwise Similarity Model

Load training data.

load('pairwiseTrainTables.mat')

The training data is a cell array of tables. Each table is a degradation feature profile for a component.
Each profile consists of life time measurements in the "Time" variable and corresponding
degradation feature measurements in the "Condition" variable.

Create a pairwise similarity model that computes distance using dynamic time warping with an
absolute distance metric and uses hours as a life time unit.

mdl = pairwiseSimilarityModel('Method',"dtw",'Distance',"absolute",'LifeTimeUnit',"hours");

Train the similarity model using the training data. Specify the names of the life time and data
variables.

fit(mdl,pairwiseTrainTables,"Time","Condition")

Load testing data. The test data contains the degradation feature measurements for a test component
up to the current life time.

load('pairwiseTestData.mat')

Predict the RUL of the test component using the trained similarity model.

estRUL = predictRUL(mdl,pairwiseTestData)

estRUL = duration
 93.671 hr

The estimated RUL for the component is around 94 hours.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To evaluate these models in parallel, set the UseParallel property to true.

See Also
Functions
fit | hashSimilarityModel | predictRUL | residualSimilarityModel

Topics
“Update RUL Prediction as Data Arrives”
“RUL Estimation Using RUL Estimator Models”

Introduced in R2018a

 pairwiseSimilarityModel

2-51

reliabilitySurvivalModel
Probabilistic failure-time model for estimating remaining useful life

Description
Use reliabilitySurvivalModel to estimate the remaining useful life (RUL) of a component using
a probability distribution of component failure times. Reliability survival models are useful when the
only data you have are the failure times for an ensemble of similar components, such as multiple
machines manufactured to the same specifications.

To configure a reliabilitySurvivalModel object for a specific type of component, use fit, which
estimates the probability distribution coefficients from a collection of failure-time data. Once you
configure the parameters of your reliability survival model, you can then predict the remaining useful
life of similar components using predictRUL. For a basic example illustrating RUL prediction, see
“Update RUL Prediction as Data Arrives”.

For general information on predicting remaining useful life, see “Models for Predicting Remaining
Useful Life”.

Creation

Syntax
mdl = reliabilitySurvivalModel
mdl = reliabilitySurvivalModel(distribution)
mdl = reliabilitySurvivalModel(initModel)
mdl = reliabilitySurvivalModel(___ ,Name,Value)

Description

mdl = reliabilitySurvivalModel creates a reliability survival model for estimating RUL model
that uses a Weibull distribution and initializes the model with default settings.

mdl = reliabilitySurvivalModel(distribution) creates a reliability survival model that
uses the specified probability distribution function and sets the Distribution property of the
model.

mdl = reliabilitySurvivalModel(initModel) creates a reliability survival model and
initializes the model parameters using an existing reliabilitySurvivalModel object initModel.

mdl = reliabilitySurvivalModel(___ ,Name,Value) specifies user-settable model properties
using name-value pairs. For example, reliabilitySurvivalModel('LifeTimeUnit',"days")
creates a reliability survival model that uses days as a lifetime unit. You can specify multiple name-
value pairs. Enclose each property name in quotes.

2 Objects

2-52

Input Arguments

initModel — Reliability survival model
reliabilitySurvivalModel object

Reliability survival model, specified as a reliabilitySurvivalModel object.

Properties
Distribution — Probability distribution function
"Weibull" (default) | "Normal" | "Poisson" | "Kernel" | "Rayleigh" | "Gamma" | ...

Probability distribution function used to model the lifetime distribution, specified as one of the
following:

Distribution String Distribution Object
"BirnbaumSaunders" BirnbaumSaundersDistribution
"Exponential" ExponentialDistribution
"Gamma" GammaDistribution
"GeneralizedPareto" GeneralizedParetoDistribution
"HalfNormal" HalfNormalDistribution
"InverseGaussian" InverseGaussianDistribution
"Kernel" KernelDistribution
"Logistic" LogisticDistribution
"Loglogistic" LoglogisticDistribution
"Lognormal" LognormalDistribution
"Nakagami" NakagamiDistribution
"Normal" NormalDistribution
"Poisson" PoissonDistribution
"Rayleigh" RayleighDistribution
"Stable" StableDistribution
"Weibull" WeibullDistribution

To configure the parameters of the probability distribution function, use the fit function.

ParameterValues — Distribution coefficients
vector

This property is read-only.

Distribution coefficients estimated by the fit function, specified as a vector. For more information on
the coefficients of each distribution function, see the corresponding distribution object listed in
Distribution. For more information on model fitting, see fitdist.

ParameterCovariance — Covariance of the distribution coefficients
array

This property is read-only.

 reliabilitySurvivalModel

2-53

Covariance of the distribution coefficients estimated by the fit function, specified as a positive array
with size equal to the number of coefficients. For more information on the coefficients of each
distribution function, see the corresponding distribution object listed in Distribution.

ParameterNames — Distribution coefficient names
string array

This property is read-only.

Distribution coefficient names assigned when the model is trained using the fit function, specified
as string array. For more information on the coefficients of each distribution function, see the
corresponding distribution object listed in Distribution.

CensorVariable — Censor variable
"" (default) | string

Censor variable, specified as a string that contains a valid MATLAB variable name. The censor
variable is a binary variable that indicates which life-time measurements in data are not end-of-life
values.

CensorVariable must not match any of the strings in DataVariables or LifeTimeVariable.

You can specify CensorVariable:

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Using dot notation after model creation

LifeTimeVariable — Lifetime variable
"" (default) | string

Lifetime variable, specified as a string that contains a valid MATLAB variable name. For survival
models, the lifetime variable contains the historical life span measurements of components.

You can specify LifeTimeVariable:

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Manually using dot notation

LifeTimeUnit — Lifetime variable units
"" (default) | string

Lifetime variable units, specified as a string.

The units of the lifetime variable do not need to be time-based. The life of the test component can be
measured in terms of a usage variable, such as distance traveled (miles) or fuel consumed (gallons).

DataVariables — Data variables
"" (default)

Data variables, specified as an empty string. This property is ignored for reliability survival models.

UserData — Additional model information
[] (default) | any data type or format

2 Objects

2-54

Additional model information for bookkeeping purposes, specified as any data type or format. The
model does not use this information.

You can specify UserData:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Object Functions
predictRUL Estimate remaining useful life for a test component
fit Estimate parameters of remaining useful life model using historical data

Examples

Train Reliability Survival Model

Load training data.

load('reliabilityData.mat')

This data is a column vector of duration objects representing battery discharge times.

Create a reliability survival model with default settings.

mdl = reliabilitySurvivalModel;

Train the survival model using the training data.

fit(mdl,reliabilityData,"hours")

Predict RUL Using Reliability Survival Model and View PDF

Load training data.

load('reliabilityData.mat')

This data is a column vector of duration objects representing battery discharge times.

Create a reliability survival model, specifying the life time variable and life time units.

mdl = reliabilitySurvivalModel('LifeTimeVariable',"DischargeTime",'LifeTimeUnit',"hours");

Train the survival model using the training data.

fit(mdl,reliabilityData)

Predict the life span of a new component, and obtain the probability distribution function for the
estimate.

[estRUL,ciRUL,pdfRUL] = predictRUL(mdl);

Plot the probability distribution.

 reliabilitySurvivalModel

2-55

bar(pdfRUL.RUL,pdfRUL.ProbabilityDensity)
xlabel('Remaining useful life (hours)')
xlim(hours([40 90]))

Improve the distribution view by providing the number of bins and bin size for the prediction.

[estRUL,ciRUL,pdfRUL] = predictRUL(mdl,'BinSize',0.5,'NumBins',500);
bar(pdfRUL.RUL,pdfRUL.ProbabilityDensity)
xlabel('Remaining useful life (hours)')
xlim(hours([40 90]))

2 Objects

2-56

Predict the RUL for a component that has been operating for 50 hours.

[estRUL,ciRUL,pdfRUL] = predictRUL(mdl,hours(50),'BinSize',0.5,'NumBins',500);
bar(pdfRUL.RUL,pdfRUL.ProbabilityDensity)
xlabel('Remaining useful life (hours)')
xlim(hours([0 40]))

 reliabilitySurvivalModel

2-57

See Also
Functions
covariateSurvivalModel | fit | predictRUL

Topics
“Update RUL Prediction as Data Arrives”
“RUL Estimation Using RUL Estimator Models”

Introduced in R2018a

2 Objects

2-58

residualSimilarityModel
Residual comparison-based similarity model for estimating remaining useful life

Description
Use residualSimilarityModel to estimate the remaining useful life (RUL) of a component using a
residual comparison-based similarity model. This model is useful when you have degradation profiles
for an ensemble of similar components, such as multiple machines manufactured to the same
specifications, and you know the dynamics of the degradation process. The historical data for each
member of the data ensemble is fitted with a model of identical structure. The degradation data of the
test component is used to compute 1-step prediction errors, or residuals, for each ensemble model.
The magnitudes of these errors indicate how similar the test component is to the corresponding
ensemble members.

To configure a residualSimilarityModel object, use fit, which trains and stores the
degradation model for each data ensemble member. Once you configure the parameters of your
similarity model, you can then predict the remaining useful life of similar components using
predictRUL. For similarity models, the RUL of the test component is estimated as the median
statistic of the lifetime span of the most similar components minus the current lifetime value of the
test component. For a basic example illustrating RUL prediction, see “Update RUL Prediction as Data
Arrives”.

For general information on predicting remaining useful life, see “Models for Predicting Remaining
Useful Life”.

Creation

Syntax
mdl = residualSimilarityModel
mdl = residualSimilarityModel(initModel)
mdl = residualSimilarityModel(___ ,Name,Value)

Description

mdl = residualSimilarityModel creates a residual comparison-based similarity model for
estimating RUL and initializes the model with default settings.

mdl = residualSimilarityModel(initModel) creates a residual comparison-based similarity
model and initializes the model parameters using an existing residualSimilarityModel object
initModel.

mdl = residualSimilarityModel(___ ,Name,Value) specifies user-settable model properties
using name-value pairs. For example, hashSimilarityModel('LifeTimeUnit',"days") creates
a residual comparison-based similarity model that uses days as a lifetime unit. You can specify
multiple name-value pairs. Enclose each property name in quotes.

 residualSimilarityModel

2-59

Input Arguments

initModel — Residual comparison-based similarity model
residualSimilarityModel object

Residual comparison-based similarity model, specified as a residualSimilarityModel object.

Properties
Method — Type of model
"arma2" (default) | "linear" | "arima2" | "poly2" | "exp1" | ...

Type of model trained using the fit function and used for residual generation, specified as one of the
following:

• "linear" — Line with offset term
• "poly2" — Second-order polynomial
• "poly3" — Third-order polynomial
• "exp1" — Exponential with offset term
• "exp2" — Sum of two exponentials
• "arma2" — Second-order ARMA model
• "arma3" — Third-order ARMA model
• "arima2" — Second-order ARMA model with noise integration
• "arima3" — Third-order ARMA model with noise integration

Select the model type based on your knowledge of the dynamics of the component degradation
process.

You can specify Method:

• Using a name-value pair when you create the model
• Using dot notation after model creation

For more information on estimating ARMA and polynomial models, see armax and polyfit,
respectively.

Distance — Distance computation method
"euclidian" (default) | "absolute" | function handle

Distance computation method, specified as one of the following:

• "euclidian" — Use the 2-norm of the residual signal.
• "absolute" — Use the 1-norm of the residual signal.
• Function handle — Use a custom function of the form:

D = distanceFunction(r)

where,

• r is the residual, specified as a column vector.

2 Objects

2-60

• D is the distance, returned as nonnegative scalar.

You can specify Distance:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Models — Parameters of the fitted models
cell array

This property is read-only.

Parameters of the fitted models for each member of the training data ensemble, specified as a cell
array and assigned by the fit function. The content of Models depends on the type of model used
for regression, as specified in Method.

Method Model Structure Models Cell Content
"linear" at + b Row vector — [a b]
"poly2" at2 + bt + c Row vector — [a b c]
"poly3" at3 + bt2 + ct + d Row vector — [a b c d]
"exp1" aebt+c Row vector — [a b c]
"exp2" aebt+cedt Row vector — [a b c d]
"arma2" Second-order ARMA model:

A q S t = C q e t

where

• A(q) = [1 a1q-1 a2q-2]
• C(q) = [1 c1q-1]
• S(t) is the degradation feature

Structure with fields:

• A — Row vector [1 a1 a2]
• C — Row vector [1 c1]

"arma3" Similar to "arma2", but with A(q) third-
order and C(q) second-order

Structure with fields:

• A — Row vector [1 a1 a2 a2]
• C — Row vector [1 c1 c2]

"arima2" Similar to "arma2", but with an additional
noise integrator:

A q S t = C q
1 − q−1e t

Structure with fields:

• A — Row vector [1 a1 a2]
• C — Row vector [1 c1]

"arima3" Similar to "arma3", but with an additional
noise integrator

Structure with fields:

• A — Row vector [1 a1 a2 a2]
• C — Row vector [1 c1 c2]

For more information on estimating ARMA and polynomial models, see armax and polyfit,
respectively.

ModelMSE — Mean squared error of the estimation for each model
vector

 residualSimilarityModel

2-61

This property is read-only.

Mean squared error of the estimation for each model in Models, specified as a vector and assigned
by the fit function.

LifeSpan — Ensemble member life spans
double vector (default) | vector of duration objects

This property is read-only.

Ensemble member life spans, specified as a double vector or duration object vector and computed
from the ensemble member degradation profiles by the fit function.

NumNearestNeighbors — Number of nearest neighbors for RUL estimation
Inf (default) | finite positive integer

Number of nearest neighbors for RUL estimation, specified as Inf or a finite positive integer. If
NumNearestNeighbors is Inf, then predictRUL uses all the ensemble members during
estimation.

You can specify NumNearestNeighbors:

• Using a name-value pair when you create the model
• Using dot notation after model creation

IncludeTies — Flag to include ties
true (default) | false

Flag to include ties, specified as true or false. When IncludeTies is true, the model includes all
neighbors whose distance to the test component data is less than the Kth smallest distance, where K
is equal to NumNearestNeigbors.

You can specify IncludeTies:

• Using a name-value pair when you create the model
• Using dot notation after model creation

Standardize — Flag for standardizing residuals
false (default) | true

Flag for standardizing residuals before computing distance, specified as true or false.

When Standardize is true, the residuals are scaled by the inverse square root of the estimated
mean squared errors in ModelMSE.

You can specify Standardize:

• Using a name-value pair when you create the model
• Using dot notation after model creation

LifeTimeVariable — Lifetime variable
"" (default) | string

Lifetime variable, specified as a string that contains a valid MATLAB variable name or "".

2 Objects

2-62

When you train the model using the fit function, if your training data is a:

• table, then LifeTimeVariable must match one of the variable names in the table
• timetable, then LifeTimeVariable one of the variable names in the table or the dimension

name of the time variable, data.Properties.DimensionNames{1}

You can specify LifeTimeVariable:

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Using dot notation after model creation

LifeTimeUnit — Lifetime variable units
"" (default) | string

Lifetime variable units, specified as a string.

The units of the lifetime variable do not need to be time-based. The life of the test component can be
measured in terms of a usage variable, such as distance traveled (miles) or fuel consumed (gallons).

DataVariables — Degradation variable names
"" (default) | string | string array

Degradation variable names, specified as a string or string array. The strings in DataVariables
must be valid MATLAB variable names.

You can specify DataVariables:

• Using a name-value pair when you create the model
• As an argument when you call the fit function
• Using dot notation after model creation

UseParallel — Flag for using parallel computing
false (default) | true

Flag for using parallel computing for nearest-neighbor searching, specified as either true or false.

You can specify UseParallel:

• Using a name-value pair when you create the model
• Using dot notation after model creation

UserData — Additional model information
[] (default) | any data type or format

Additional model information for bookkeeping purposes, specified as any data type or format. The
model does not use this information.

You can specify UserData:

• Using a name-value pair when you create the model
• Using dot notation after model creation

 residualSimilarityModel

2-63

Object Functions
predictRUL Estimate remaining useful life for a test component
fit Estimate parameters of remaining useful life model using historical data
compare Compare test data to historical data ensemble for similarity models

Examples

Train Residual Similarity Model

Load training data.

load('residualTrainVectors.mat')

The training data is a cell array of column vectors. Each column vector is a degradation feature
profile for a component.

Create a residual similarity model with default settings.

mdl = residualSimilarityModel;

Train the similarity model using the training data.

fit(mdl,residualTrainVectors)

Train Residual Similarity Model Using Tabular Data

Load training data.

load('residualTrainTables.mat')

The training data is a cell array of tables. Each table is a degradation feature profile for a component.
Each profile consists of life time measurements in the "Time" variable and corresponding
degradation feature measurements in the "Condition" variable.

Create a residual similarity model that fits the data with a third-order ARMA model and uses an
absolute distance metric.

mdl = residualSimilarityModel('Method',"arma3",'Distance',"absolute");

Train the similarity model using the training data. Specify the names of the life time and data
variables.

fit(mdl,residualTrainTables,"Time","Condition")

Predict RUL Using Residual Similarity Model

Load training data.

load('residualTrainTables.mat')

2 Objects

2-64

The training data is a cell array of tables. Each table is a degradation feature profile for a component.
Each profile consists of life time measurements in the "Time" variable and corresponding
degradation feature measurements in the "Condition" variable.

Create a residual similarity model that fits the data with a third-order ARMA model and uses hours as
the life time unit.

mdl = residualSimilarityModel('Method',"arma3",'LifeTimeUnit',"hours");

Train the similarity model using the training data. Specify the names of the life time and data
variables.

fit(mdl,residualTrainTables,"Time","Condition")

Load testing data. The test data contains the degradation feature measurements for a test component
up to the current life time.

load('residualTestData.mat')

Predict the RUL of the test component using the trained similarity model.

estRUL = predictRUL(mdl,residualTestData)

estRUL = duration
 85.73 hr

The estimated RUL for the component is around 86 hours.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To evaluate these models in parallel, set the UseParallel property to true.

See Also
Functions
fit | hashSimilarityModel | pairwiseSimilarityModel | predictRUL

Topics
“Update RUL Prediction as Data Arrives”
“RUL Estimation Using RUL Estimator Models”

Introduced in R2018a

 residualSimilarityModel

2-65

simulationEnsembleDatastore
Manage ensemble data generated by generateSimulationEnsemble or by logging simulation data
in Simulink

Description
A simulationEnsembleDatastore object is a datastore specialized for use in developing
algorithms for condition monitoring and predictive maintenance using simulated data.

This object specifies the data variables, independent variables, and condition variables stored in a
collection of MATLAB data files (MAT-files). The data files contain
Simulink.SimulationData.Dataset variables that are the result of logging data during Simulink
model simulation.

For a detailed example illustrating the use of a simulated ensemble datastore, see “Generate and Use
Simulated Data Ensemble”. For general information about data ensembles in Predictive Maintenance
Toolbox, see “Data Ensembles for Condition Monitoring and Predictive Maintenance”.

Creation
To create a simulationEnsembleDatastore object:

1 Generate and log simulation data from a Simulink model. You can do so using
generateSimulationEnsemble or any other means of logging simulation to disk.

2 Create a simulationEnsembleDatastore object that points to the generated simulation data
using the simulationEnsembleDatastore command (described below).

If you have simulation data previously generated with generateSimulationEnsemble or other
means, you can use the creation function simulationEnsembleDatastore to create a new
simulation ensemble datastore object at any time.

Syntax
ensemble = simulationEnsembleDatastore(location)
ensemble = simulationEnsembleDatastore(location,signallog)
ensemble = simulationEnsembleDatastore(location,signallog,Name,Value)

Description

ensemble = simulationEnsembleDatastore(location) creates a simulation ensemble from
data previously generated using generateSimulationEnsemble in the folder specified by
location. The function identifies ensemble variables in the generated data from information stored
in the generated MAT-files. The function populates the DataVariables and SelectedVariables
properties of ensemble with the names of these ensemble variables.

ensemble = simulationEnsembleDatastore(location,signallog) uses signallog to
determine which variable in the MAT-files contains logged signals. Use the variable name specified in

2 Objects

2-66

the Signal logging configuration parameter of the Simulink model from which the data is
generated. Specifying this variable allows the ensemble to treat those signals as ensemble data
variables, rather than the signallog variable itself. The other variables in the MAT-file are also
returned as ensemble data variables.

ensemble = simulationEnsembleDatastore(location,signallog,Name,Value) specifies
additional properties on page 2-67 of the object using one or more name-value pair arguments. For
example, using 'IndependentVariables',["Age";"ID"] specifies the independent variables
when you create the object.

Input Arguments

location — File path
string | character vector

File path to the location in which to store simulation data, specified as a string or a character vector.
The file path can be any location supported by MATLAB datastores, including an IRI path pointing to
a remote location. However, when you use a simulationEnsembleDatastore to manage remote
data, you cannot use writeToLastMemberRead to add data to the ensemble datastore. For more
information about working with remote data in MATLAB, see “Work with Remote Data”
Example: pwd + "\simResults"

signallog — Variable name of logged signals
string | character vector

Variable name of logged signals, specified as a string or a character vector. This input argument tells
simulationEnsembleDatastore which data variable in the stored MAT-files contains the logged
simulation data. This variable name is specified in the Signal logging configuration parameter of
the Simulink model from which the data is generated. When you use
generateSimulationEnsemble to generate simulation data for the ensemble, each generated MAT-
file contains a variable, PMSignalLogName, specifying the variable name of the logged signals.
Example: "logsout"

Properties
DataVariables — Data variables in the ensemble
string array of logged signal names (default) | string array

Data variables in the ensemble, specified as a string array. Data variables are the main content of the
members of an ensemble. Data variables can include measured data or derived data for analysis and
development of predictive maintenance algorithms. For example, your data variables might include
measured or simulated vibration signals and derived values such as mean vibration value or peak
vibration frequency. In practice, your data variables, independent variables, and condition variables
are all distinct sets of variables.

simulationEnsembleDatastore sets the initial value of DataVariables to the names of all the
logged signals in the data generated with generateSimulationEnsemble.
simulationEnsembleDatastore also adds the variables SimulationInput and
SimulationMetadata to DataVariables. These variables contain information about how the
simulation was performed.

You can also specify DataVariables using a cell array of character vectors, such as
{'Vibration';'Tacho'}, but the variable names are always stored as a string array,

 simulationEnsembleDatastore

2-67

["Vibration";"Tacho"]. If you specify a matrix of variable names, the matrix is flattened to a
column vector.

IndependentVariables — Independent variables in the ensemble
[] (default) | string array

Independent variables in the ensemble, specified as a string array. You typically use independent
variables to order the members of an ensemble. Examples are timestamps, number of operating
hours, or miles driven. Set this property to the names of such variables in your ensemble. In practice,
your data variables, independent variables, and condition variables are all distinct sets of variables.

You can also specify IndependentVariables using a cell array of character vectors, such as
{'Time';'Age'}, but the variable names are always stored as a string array, ["Time";"Age"]. If
you specify a matrix of variable names, the matrix is flattened to a column vector.

ConditionVariables — Condition variables in the ensemble
[] (default) | string array

Condition variables in the ensemble, specified as a string array. Use condition variables to label the
members in a ensemble according to the fault condition or other operating condition under which the
ensemble member was collected. In practice, your data variables, independent variables, and
condition variables are all distinct sets of variables.

You can also specify ConditionVariables using a cell array of character vectors, such as
{'GearFault';'Temperature'}, but the variable names are always stored as a string array,
["GearFault";"Temperature"]. If you specify a matrix of variable names, the matrix is flattened
to a column vector.

SelectedVariables — Variables to read
string array of logged signal names (default) | string array

Variables to read from the ensemble, specified as a string array. Use this property to specify which
variables are extracted to the MATLAB workspace when you use the read command to read data
from the ensemble. read returns a table row containing a table variable for each name specified in
SelectedVariables. For example, suppose that you have an ensemble, ensemble, that contains six
variables, and you want to read only two of them, Vibration and FaultState. Set the
SelectedVariables property and call read.

ensemble.SelectedVariables = ["Vibration";"FaultState"];
data = read(ensemble)

SelectedVariables can be any combination of the variables in the DataVariables,
ConditionVariables, and IndependentVariables properties. If SelectedVariables is empty,
read generates an error.

simulationEnsembleDatastore sets the initial value of SelectedVariables to the names of all
the logged signals in the data generated generateSimulationEnsemble.

You can specify SelectedVariables using a cell array of character vectors, such as
{'Vibration';'Tacho'}, but the variable names are always stored as a string array,
["Vibration";"Tacho"]. If you specify a matrix of variable names, the matrix is flattened to a
column vector.

ReadSize — Number of members to read
1 (default) | positive integer

2 Objects

2-68

Number of members to read from the ensemble datastore at once, specified as a positive integer that
is smaller than the total number of members in the ensemble. By default, the read command returns
a one-row table containing data from one ensemble member. To read data from multiple members in a
single read operation, set this property to an integer value greater than one. For example, if
ReadSize = 3, then read returns a three-row table where each row contains data from a different
ensemble member. If fewer than ReadSize members are unread, then read returns a table with as
many rows as there are remaining members.

The ensemble datastore property LastMemberRead contains the names of all files read during the
most recent read operation. Thus, for instance, if ReadSize = 3, then a read operation sets
LastMemberRead to a string vector containing three file names.

When you use writeToLastMemberRead, specify the data to write as a table with a number of rows
equal to ReadSize. The writeToLastMemberRead command updates the members specified by
LastMemberRead, writing one table row to each specified file.

Changing the ReadSize property also resets the ensemble to its unread state. For instance, suppose
that you read some ensemble members one at a time (ReadSize = 1), and then change ReadSize to
3. The next read operation returns data from the first three ensemble members.

NumMembers — Number of members in ensemble
positive integer

This property is read-only.

Number of members in the ensemble, specified as a positive integer.

LastMemberRead — File name of last ensemble member read
"" (default) | string | string array

This property is read-only.

File name of last ensemble member read into the MATLAB workspace, specified as a string. When
you use the read command to read data from an ensemble datastore, the software determines which
ensemble member to read next, and reads data from the corresponding file. The LastMemberRead
property contains the path to the most recently read file. When the ensemble datastore has not yet
been read, or has been reset, LastMemberRead is an empty string.

When you call writeToLastMemberRead to add data back to the ensemble datastore, that function
writes to the file specified in LastMemberRead.

By default, read reads data from one ensemble member at a time (the ReadSize property of the
ensemble datastore is 1). When ReadSize > 1, LastMemberRead is a string array containing the
paths to all files read in the most recent read operation.

Files — List of files in ensemble datastore
string vector

This property is read-only.

List of files in the ensemble datastore, specified as a column string vector of length NumMembers.
Each entry contains the full path to a file in the datastore. The files are in the order in which the read
command reads ensemble members.
Example: ["C:\Data\Data_01.csv"; "C:\Data\Data_02.csv"; "C:\Data\Data_03.csv"]

 simulationEnsembleDatastore

2-69

Object Functions
The read and writeToLastMemberRead functions are specialized for Predictive Maintenance
Toolbox ensemble data. Other functions, such as reset and hasdata, are identical to those used
with datastore objects in MATLAB. To extract specific ensemble members into a smaller or more
specialized ensemble datastore, use subset. To transfer all the member data into a table or cell array
with a single command, use readall. To partition an ensemble datastore, use the
partition(ds,n,index) syntax of the partition function.
read Read member data from an ensemble datastore
writeToLastMemberRead Write data to member of an ensemble datastore
subset Create new ensemble datastore from subset of existing ensemble

datastore
reset Reset datastore to initial state
hasdata Determine if data is available to read
progress Determine how much data has been read
readall Read all data in datastore
numpartitions Number of datastore partitions
partition Partition a datastore
tall Create tall array
isPartitionable Determine whether datastore is partitionable
isShuffleable Determine whether datastore is shuffleable

Examples

Generate Ensemble of Fault Data

Generate a simulation ensemble datastore of data representing a machine operating under fault
conditions by simulating a Simulink® model of the machine while varying a fault parameter.

Load the Simulink model. This model is a simplified version of the gear-box model described in
“Using Simulink to Generate Fault Data”. For this example, only one fault mode is modeled, a gear-
tooth fault.

mdl = 'TransmissionCasingSimplified';
open_system(mdl)

The gear-tooth fault is modeled as a disturbance in the Gear Tooth fault subsystem. The
magnitude of the disturbance is controlled by the model variable ToothFaultGain, where
ToothFaultGain = 0 corresponds to no gear-tooth fault (healthy operation). To generate the
ensemble of fault data, you use generateSimulationEnsemble to simulate the model at different
values of ToothFaultGain, ranging from -2 to zero. This function uses an array of
Simulink.SimulationInput objects to configure the Simulink model for each member in the
ensemble. Each simulation generates a separate member of the ensemble in its own data file. Create
such an array, and use setVariable to assign a tooth-fault gain value for each run.

toothFaultValues = -2:0.5:0; % 5 ToothFaultGain values

for ct = numel(toothFaultValues):-1:1
 simin(ct) = Simulink.SimulationInput(mdl);
 simin(ct) = setVariable(simin(ct),'ToothFaultGain',toothFaultValues(ct));
end

2 Objects

2-70

For this example, the model is already configured to log certain signal values, Vibration and Tacho
(see “Export Signal Data Using Signal Logging” (Simulink)). generateSimulationEnsemble
further configures the model to:

• Save logged data to files in the folder you specify.
• Use the timetable format for signal logging.
• Store each Simulink.SimulationInput object in the saved file with the corresponding logged

data.

Specify a location for the generated data. For this example, save the data to a folder called Data
within your current folder. The indicator status is 1 (true) if all the simulations complete without
error.

mkdir Data
location = fullfile(pwd,'Data');
[status,E] = generateSimulationEnsemble(simin,location);

[23-Feb-2021 19:09:42] Running simulations...
[23-Feb-2021 19:10:00] Completed 1 of 5 simulation runs
[23-Feb-2021 19:10:14] Completed 2 of 5 simulation runs
[23-Feb-2021 19:10:26] Completed 3 of 5 simulation runs
[23-Feb-2021 19:10:39] Completed 4 of 5 simulation runs
[23-Feb-2021 19:10:50] Completed 5 of 5 simulation runs

Inside the Data folder, examine one of the files. Each file is a MAT-file containing the following
MATLAB® variables:

• SimulationInput — The Simulink.SimulationInput object that was used to configure the
model for generating the data in the file. You can use this to extract information about the
conditions (such as faulty or healthy) under which this simulation was run.

• logsout — A Dataset object containing all the data that the Simulink model is configured to log.
• PMSignalLogName — The name of the variable that contains the logged data ('logsout' in this

example). The simulationEnsembleDatastore command uses this name to parse the data in
the file.

• SimulationMetadata — Other information about the simulation that generated the data logged
in the file.

Now you can create the simulation ensemble datastore using the generated data. The resulting
simulationEnsembleDatastore object points to the generated data. The object lists the data
variables in the ensemble, and by default all the variables are selected for reading. Examine the
DataVariables and SelectedVariables properties of the ensemble to confirm these
designations.

ensemble = simulationEnsembleDatastore(location)

ensemble =
 simulationEnsembleDatastore with properties:

 DataVariables: [4x1 string]
 IndependentVariables: [0x0 string]
 ConditionVariables: [0x0 string]
 SelectedVariables: [4x1 string]
 ReadSize: 1
 NumMembers: 5

 simulationEnsembleDatastore

2-71

 LastMemberRead: [0x0 string]
 Files: [5x1 string]

ensemble.DataVariables

ans = 4x1 string
 "SimulationInput"
 "SimulationMetadata"
 "Tacho"
 "Vibration"

ensemble.SelectedVariables

ans = 4x1 string
 "SimulationInput"
 "SimulationMetadata"
 "Tacho"
 "Vibration"

You can now use ensemble to read and analyze the generated data in the ensemble datastore. See
simulationEnsembleDatastore for more information.

Extract Subset of Stored Variables from Ensemble Member

In general, you use the read command to extract data from a simulationEnsembleDatastore
object into the MATLAB® workspace. Often, your ensemble contains more variables than you need to
use for a particular analysis. Use the SelectedVariables property of the
simulationEnsembleDatastore object to select a subset of variables for reading.

For this example, use the following code to create a simulationEnsembleDatastore object using
data previously generated by running a Simulink® model at a various fault values (See
generateSimulationEnsemble.). The ensemble includes simulation data for five different values of
a model parameter, ToothFaultGain. Because of the volume of data, the unzip operation takes a
few minutes.

unzip simEnsData.zip % extract compressed files
ensemble = simulationEnsembleDatastore(pwd,'logsout')

ensemble =
 simulationEnsembleDatastore with properties:

 DataVariables: [5x1 string]
 IndependentVariables: [0x0 string]
 ConditionVariables: [0x0 string]
 SelectedVariables: [5x1 string]
 ReadSize: 1
 NumMembers: 5
 LastMemberRead: [0x0 string]
 Files: [5x1 string]

The model that generated the data, TransmissionCasingSimplified, was configured such that
the resulting ensemble contains variables including accelerometer data, Vibration, and tachometer

2 Objects

2-72

data, Tacho. By default, the simulationEnsembleDatastore object designates all these variables
as both data variables and selected variables, as shown in the DataVariables and
SelectedVariables properties.

ensemble.DataVariables

ans = 5x1 string
 "PMSignalLogName"
 "SimulationInput"
 "SimulationMetadata"
 "Tacho"
 "Vibration"

ensemble.SelectedVariables

ans = 5x1 string
 "PMSignalLogName"
 "SimulationInput"
 "SimulationMetadata"
 "Tacho"
 "Vibration"

Suppose that for the analysis you want to do, you need only the Vibration data and the
Simulink.SimulationInput object that describes the conditions under which this member data
was simulated. Set ensemble.SelectedVariables to specify the variables you want to read. The
read command then extracts those variables from the current ensemble member.

ensemble.SelectedVariables = ["Vibration";"SimulationInput"];
data1 = read(ensemble)

data1=1×2 table
 Vibration SimulationInput
 ___________________ ______________________________

 {20202x1 timetable} {1x1 Simulink.SimulationInput}

data.Vibration is a cell array containing one timetable that stores the simulation times and the
corresponding vibration signal. You can now process this data as needed. For instance, extract the
vibration data from the table and plot it.

vibdata1 = data1.Vibration{1};
plot(vibdata1.Time,vibdata1.Data)
title('Vibration - First Ensemble Member')

 simulationEnsembleDatastore

2-73

The next time you call read on this ensemble, the last-read member designation advances to the next
member of the ensemble (see “Data Ensembles for Condition Monitoring and Predictive
Maintenance”). Read the selected variables from the next member of the ensemble.

data2 = read(ensemble)

data2=1×2 table
 Vibration SimulationInput
 ___________________ ______________________________

 {20215x1 timetable} {1x1 Simulink.SimulationInput}

To confirm that data1 and data2 contain data from different ensemble members, examine the values
of the varied model parameter, ToothFaultGain. For each ensemble, this value is stored in the
Variables field of the SimulationInput variable.

data1.SimulationInput{1}.Variables

ans =
 Variable with properties:

 Name: 'ToothFaultGain'
 Value: -2
 Workspace: 'global-workspace'
 Description: ""

2 Objects

2-74

data2.SimulationInput{1}.Variables

ans =
 Variable with properties:

 Name: 'ToothFaultGain'
 Value: -1.5000
 Workspace: 'global-workspace'
 Description: ""

This result confirms that data1 is from the ensemble member with ToothFaultGain = –2, and
data2 is from the member with ToothFaultGain = –1.5.

Append Derived Data to Ensemble Members

You can process data in an ensemble datastore and add derived variables to the ensemble members.
For this example, process a variable value to compute a label that indicates whether the ensemble
member contains data obtained with a fault present. You then add that label to the ensemble.

For this example, use the following code to create a simulationEnsembleDatastore object using
data previously generated by running a Simulink® model at a various fault values. (See
generateSimulationEnsemble.) The ensemble includes simulation data for five different values of
a model parameter, ToothFaultGain. The model was configured to log the simulation data to a
variable named logsout in the MAT-files that are stored for this example in simEnsData.zip.
Because of the volume of data, the unzip operation might take a minute or two.

unzip simEnsData.zip % extract compressed files
ensemble = simulationEnsembleDatastore(pwd,'logsout')

ensemble =
 simulationEnsembleDatastore with properties:

 DataVariables: [5x1 string]
 IndependentVariables: [0x0 string]
 ConditionVariables: [0x0 string]
 SelectedVariables: [5x1 string]
 ReadSize: 1
 NumMembers: 5
 LastMemberRead: [0x0 string]
 Files: [5x1 string]

Read the data from the first member in the ensemble. The software determines which ensemble is the
first member, and updates the property ensemble.LastMemberRead to reflect the name of the
corresponding file.

data = read(ensemble)

data=1×5 table
 PMSignalLogName SimulationInput SimulationMetadata Tacho Vibration
 _______________ ______________________________ _________________________________ ___________________ ___________________

 {'logsout'} {1x1 Simulink.SimulationInput} {1x1 Simulink.SimulationMetadata} {20202x1 timetable} {20202x1 timetable}

 simulationEnsembleDatastore

2-75

By default, all the variables stored in the ensemble data are designated as SelectedVariables.
Therefore, the returned table row includes all ensemble variables, including a variable
SimulationInput, which contains the Simulink.SimulationInput object that configured the
simulation for this ensemble member. That object includes the ToothFaultGain value used for the
ensemble member, stored in a data structure in its Variables property. Examine that value. (For
more information about how the simulation configuration is stored, see
Simulink.SimulationInput (Simulink).)

data.SimulationInput{1}

ans =
 SimulationInput with properties:

 ModelName: 'TransmissionCasingSimplified'
 InitialState: [0x0 Simulink.op.ModelOperatingPoint]
 ExternalInput: []
 ModelParameters: [0x0 Simulink.Simulation.ModelParameter]
 BlockParameters: [0x0 Simulink.Simulation.BlockParameter]
 Variables: [1x1 Simulink.Simulation.Variable]
 PreSimFcn: []
 PostSimFcn: []
 UserString: ''

Inputvars = data.SimulationInput{1}.Variables;
Inputvars.Name

ans =
'ToothFaultGain'

Inputvars.Value

ans = -2

Suppose that you want to convert the ToothFaultGain values for each ensemble member into a
binary indicator of whether or not a tooth fault is present. Suppose further that you know from your
experience with the system that tooth-fault gain values less than 0.1 in magnitude are small enough
to be considered healthy operation. Convert the gain value for this ensemble into an indicator that is
0 (no fault) for –0.1 < gain < 0.1, and 1 (fault) otherwise.

sT = abs(Inputvars.Value) < 0.1;

To append the new tooth-fault indicator to the corresponding ensemble data, first expand the list of
data variables in the ensemble to include a variable for the indicator.

ensemble.DataVariables = [ensemble.DataVariables; "ToothFault"];
ensemble.DataVariables

ans = 6x1 string
 "PMSignalLogName"
 "SimulationInput"
 "SimulationMetadata"
 "Tacho"
 "Vibration"
 "ToothFault"

2 Objects

2-76

This operation is conceptually equivalent to adding a column to the table of ensemble data. Now that
DataVariables contains the new variable name, assign the derived value to that column of the
member using writeToLastMemberRead.

writeToLastMemberRead(ensemble,'ToothFault',sT);

In practice, you want to append the tooth-fault indicator to every member in the ensemble. To do so,
reset the ensemble datastore to its unread state, so that the next read operation starts at the first
ensemble member. Then, loop through all the ensemble members, computing ToothFault for each
member and appending it. The reset operation does not change ensemble.DataVariables, so
"ToothFault" is still present in that list.

reset(ensemble);

sT = false;
while hasdata(ensemble)
 data = read(ensemble);
 InputVars = data.SimulationInput{1}.Variables;
 TFGain = InputVars.Value;
 sT = abs(TFGain) < 0.1;
 writeToLastMemberRead(ensemble,'ToothFault',sT);
end

Finally, designate the new tooth-fault indicator as a condition variable in the ensemble datastore. You
can use this designation to track and refer to variables in the ensemble data that represent conditions
under which the member data was generated.

ensemble.ConditionVariables = {"ToothFault"};
ensemble.ConditionVariables

ans =
"ToothFault"

You can add the new variable to ensemble.SelectedVariables when you want to read it out for
further analysis. For an example that shows more ways to manipulate and analyze data stored in a
simulationEnsembleDatastore object, see “Using Simulink to Generate Fault Data”.

Read Multiple Ensemble Members in One Operation

To read data from multiple ensemble members in one call to the read command, use the ReadSize
property of an ensemble datastore. This example uses simulationEnsembleDatastore, but you
can use the same technique for fileEnsembleDatastore.

Use the following code to create a simulationEnsembleDatastore object using data previously
generated by running a Simulink model at a various fault values (see
generateSimulationEnsemble). The ensemble includes simulation data for five different values of
a model parameter, ToothFaultGain. (Because of the volume of data, the unzip operation might
take a minute or two.) Specify some of the data variables to read.

unzip simEnsData.zip % extract compressed files
ensemble = simulationEnsembleDatastore(pwd,'logsout');
ensemble.SelectedVariables = ["Vibration";"SimulationInput"];

 simulationEnsembleDatastore

2-77

By default, calling read on this ensemble datastore returns a single-row table containing the values
of the Vibration and SimulationInput variables for the first ensemble member. Change the
ReadSize property to read three members at once.

ensemble.ReadSize = 3;
data1 = read(ensemble)

data1=3×2 table
 Vibration SimulationInput
 ___________________ ______________________________

 {20202x1 timetable} {1x1 Simulink.SimulationInput}
 {20215x1 timetable} {1x1 Simulink.SimulationInput}
 {20204x1 timetable} {1x1 Simulink.SimulationInput}

read returns a three-row table, where each row contains data from one of the first, second, and third
ensemble members. read also updates the LastReadMember property of the ensemble datastore to a
string array containing the paths of the three corresponding files. Avoid setting ReadSize to a value
so large as to risk running out of memory while loading the data.

If the ensemble contains three or more additional members, the next read operation returns data
from the fourth, fifth, and sixth members. Because the ensemble of this example contains only five
members total, the next read operation returns only two rows.

data2 = read(ensemble)

data2=2×2 table
 Vibration SimulationInput
 ___________________ ______________________________

 {20213x1 timetable} {1x1 Simulink.SimulationInput}
 {20224x1 timetable} {1x1 Simulink.SimulationInput}

See Also
fileEnsembleDatastore | generateSimulationEnsemble

Topics
“Generate and Use Simulated Data Ensemble”
“Data Ensembles for Condition Monitoring and Predictive Maintenance”

Introduced in R2018a

2 Objects

2-78

workspaceEnsemble
Manage ensemble data stored in the MATLAB workspace using code generated by Diagnostic Feature
Designer

Description
A workspaceEnsemble object is an ensemble object specialized for use in code generated by
Diagnostic Feature Designer. The workspaceEnsemble object is similar to a
fileEnsembleDatastore object, as both specify the data variables, independent variables, and
condition variables in the ensemble. Unlike a file ensemble datastore, however, a workspace
ensemble operates on data in memory rather than in external files.

When you import a table or a cell array into the app and generate code after you have completed your
interactive feature design, that code includes the creation of a workspace ensemble. This ensemble
contains variables that are identical to those in your initial import, and can manage any input data
sets that include the same variables. For example, suppose that you import a 20-member table into
the app, extract a feature, and generate a function. The workspace ensemble in that function is
compatible with a 2000-member table, as long as the table includes the same variables.

For more information about data ensembles, see “Data Ensembles for Condition Monitoring and
Predictive Maintenance”.

Creation

Syntax
wsensemble = workspaceEnsemble(Name,Value)
wsensemble = workspaceEnsemble(data,Name,Value)

Description

wsensemble = workspaceEnsemble(Name,Value) creates an empty workspaceEnsemble
object wsensemble with properties specified by name-value pair arguments.

wsensemble = workspaceEnsemble(data,Name,Value) creates a workspaceEnsemble object
wsensemble from the data set data.

Input Arguments

data — Input data set
table | cell array of tables

Input data set, specified as a table or a cell array of tables.

• If data is a table, each row represents the data of one ensemble member.
• If data is a cell array of tables, each table in the cell represents the data of one ensemble

member.

 workspaceEnsemble

2-79

Properties
DataVariables — Data variables
string | cell array

Data variables in the ensemble, specified as a string or cell array. Data variables are the main content
of the members of an ensemble. Data variables can include measured data or derived data. For
example, your data variables might include measured vibration or simulated vibration signals and
derived values such mean vibration value or peak vibration frequency.
Example: outputEnsemble = workspaceEnsemble(inputData,'DataVariables',
["Vibration";"Tacho"])

IndependentVariables — Independent variables
string | cell array

Independent variables in the ensemble, specified as a string or cell array. Typically, independent
variables order the members of an ensemble. Examples are timestamps or the number of operating
cycles.
Example: outputEnsemble =
workspaceEnsemble(inputData,'IndependentVariables',"Time")

ConditionVariables — Condition variables
string | cell array

Condition variables in the ensemble, specified as a string or cell array. Condition variables label the
members in an ensemble according to the fault condition or other operating condition under which
the ensemble member was collected.
Example: outputEnsemble =
workspaceEnsemble(inputData,'ConditionVariables',"faultCode")

SelectedVariables — Selected variables
string | cell array

Variables to read from the ensemble, specified as a string or cell array. SelectedVariables
identifies which variables in data to read and operate on.
Example: outputEnsemble.SelectedVariables = ["Vibration","Tacho"]

ReadSize — Number of members to read
1 (default) | positive integer

Number of members to read from the workspace ensemble at once when you use the read command,
specified as a positive integer that is smaller than the total number of members in the ensemble. By
default, the read command returns a one-row table containing data from one ensemble member. To
read data from multiple members in a single read operation, set this property to an integer value
greater than one. For example, if ReadSize is 3, then read returns a three-row table where each
row contains data from a different ensemble member. If fewer than ReadSize members are unread,
then read returns a table with as many rows as there are remaining members.

Changing the ReadSize property also resets the ensemble to its unread state. For instance, suppose
that you set ReadSize to 1 to read some ensemble members one at a time, and then change
ReadSize to 3. The next read operation returns data from the first three ensemble members.

2 Objects

2-80

Object Functions
refresh Update a workspace ensemble with partitions of modified or added data computed in

parallel processing
writeMember Write data to a specific workspace ensemble member
readMember Return ensemble member data based on the member index
findIndex Find the workspace ensemble member indices for members that match a specified

variable name and value

Examples

Create and Read a Workspace Ensemble

Create a workspaceEnsemble object from an ensemble table and read its contents.

Load the ensemble table dataTable and view the first three members.

load dfd_Tutorial dataTable
head(dataTable,3)

ans=3×3 table
 Vibration Tacho faultCode
 __________________ __________________ _________

 {6000x1 timetable} {6000x1 timetable} 0
 {6000x1 timetable} {6000x1 timetable} 1
 {6000x1 timetable} {6000x1 timetable} 1

The table contains 16 members, each of which contain timetables with vibration and tacho data along
with a scalar fault code.

Create a Workspace Ensemble

Create a workspace ensemble wensemble from dataTable.

wensemble = workspaceEnsemble(dataTable,'DataVariables',["Vibration";"Tacho"],...
 'ConditionVariables',"faultCode")

wensemble =
 workspaceEnsemble with properties:

 DataVariables: [2x1 string]
 IndependentVariables: [0x0 string]
 ConditionVariables: "faultCode"
 SelectedVariables: [3x1 string]
 ReadSize: 1
 NumMembers: 16
 LastMemberRead: [0x0 string]

Confirm the data condition variable selections.

dv = wensemble.DataVariables

dv = 2x1 string
 "Vibration"

 workspaceEnsemble

2-81

 "Tacho"

cv = wensemble.ConditionVariables

cv =
"faultCode"

Read Workspace Ensemble Members

Inspect the data variables in the workspace ensemble for the first two members.

By default, reading the ensemble returns all ensemble variables. To select a subset of variables to
read, specify SelectedVariables.

wensemble.SelectedVariables = ["Vibration","Tacho"];

Use read to get the contents of the next unread member. Each time you read a member, the software
marks that member as read, and the next read command returns the following member. You can use
a succession of read commands to loop through an ensemble. To start at the first member, use
reset.

reset(wensemble)
m1 = read(wensemble)

m1=1×2 table
 Vibration Tacho
 __________________ __________________

 {6000x1 timetable} {6000x1 timetable}

m2 = read(wensemble);

m1 and m2 are both tables containing vibration and tacho data. m1 contains the data for the first
member. m2 contains the data for the second member.

Examine the vibration samples for both members. Extract the vibration signals from m1 and m2 and
display the first three samples of each signal.

m1vib = readMemberData(m1,'Vibration');
m2vib = readMemberData(m2,'Vibration');
head(m1vib,3)

ans=3×1 timetable
 Time Data
 _________ ________

 0 sec -0.66925
 0.005 sec -0.61623
 0.01 sec -0.56666

head(m2vib,3)

ans=3×1 timetable
 Time Data
 _________ _______

2 Objects

2-82

 0 sec -1.6231
 0.005 sec -1.5892
 0.01 sec -1.5534

Each read command returns a unique result.

Manage Variables and Features in a Workspace Ensemble

This example illustrates some of the basic commands used in code that Diagnostic Feature
Designer generates. The example shows how to use these commands to create a workspace
ensemble from a table, perform member-by-member computations for a new feature, and create a
feature table and an ensemble table from the workspace ensemble.

Interacting with a workspace ensemble is similar to interacting with a file ensemble datastore or a
simulation ensemble datastore. Many of the commands are the same. Unlike the ensemble
datastores, which allow interaction with external files, the workspace ensemble datastore enables
interaction with data in memory.

Create a Workspace Ensemble from a Table

Load the ensemble table dataTable, which contains 16 members, each of which contain timetables
with vibration and tacho data along with a scalar fault code.

load dfd_Tutorial dataTable

Create a workspace ensemble wensemble from dataTable, specifying the data variables and
condition variables corresponding to the variables in dataTable.

wensemble = workspaceEnsemble(dataTable,'DataVariables',["Vibration";"Tacho"],...
 'ConditionVariables',"faultCode")

wensemble =
 workspaceEnsemble with properties:

 DataVariables: [2x1 string]
 IndependentVariables: [0x0 string]
 ConditionVariables: "faultCode"
 SelectedVariables: [3x1 string]
 ReadSize: 1
 NumMembers: 16
 LastMemberRead: [0x0 string]

Processing the data and extracting features requires only Vibration and Tacho. Specify
SelectedVariables to contain Vibration and Tacho.

wensemble.SelectedVariables = ["Vibration","Tacho"];

Compute Mean of Vibration Signal for First Ensemble Member

The mean of the vibration signal represents a scalar feature for each member. Compute this feature
for the first member, using an approach that scales to a loop that processes multiple members.

Reset the ensemble and read the first member.

 workspaceEnsemble

2-83

reset(wensemble)
m = read(wensemble)

m=1×2 table
 Vibration Tacho
 __________________ __________________

 {6000x1 timetable} {6000x1 timetable}

Extract the vibration data from the timetable.

mvibd = readMemberData(m,'Vibration',"Data");

Compute the mean value of the vibration.

m_mean = mean(mvibd)

m_mean = 0.0218

Append the results to member table m.

m = [m,table(m_mean,'VariableNames',"Data_Mean")]

m=1×3 table
 Vibration Tacho Data_Mean
 __________________ __________________ _________

 {6000x1 timetable} {6000x1 timetable} 0.021809

Add New Feature to Ensemble Variables

To incorporate the updated member into wensemble, you must first specify the new Data_Mean
feature as an ensemble variable. Add Data_Mean to the set of ensemble data variables dv using dot
notation.

dv = wensemble.DataVariables;
wensemble.DataVariables = [dv;"Data_Mean"];

Append Updated Member Table to Workspace Ensemble

Append the updated member table to the ensemble using the writeToLastMemberRead command.

writeToLastMemberRead(wensemble,m)

Loop through Remaining Ensemble Members

Perform the same member-specific steps for the remaining ensemble members.

while hasdata(wensemble)
 m = read(wensemble);
 mvibd = readMemberData(m,'Vibration',"Data");
 m_mean = mean(mvibd);
 m = [m,table(m_mean,'VariableNames',"Data_Mean")];
 writeToLastMemberRead(wensemble,m)
end

2 Objects

2-84

Create Feature Table and Ensemble Table from Workspace Ensemble

Extract the feature table from wensemble with the readFeatureTable command. View the first
three rows.

ft = readFeatureTable(wensemble);
head(ft,3)

ans=3×2 table
 faultCode Data_Mean
 _________ __________

 0 0.021809
 1 -0.0092964
 1 -0.46431

The feature table contains the condition variable FaultCode and the data variable Data_Mean.

Set the SelectedVariables property to include all variables so that the resulting ensemble table
contains all your information.

wensemble.SelectedVariables = ["Vibration";"Tacho";"Data_Mean";"faultCode"]

wensemble =
 workspaceEnsemble with properties:

 DataVariables: [3x1 string]
 IndependentVariables: [0x1 string]
 ConditionVariables: "faultCode"
 SelectedVariables: [4x1 string]
 ReadSize: 1
 NumMembers: 16
 LastMemberRead: [0x0 string]

Use the datastore command readall to convert the workspace ensemble into an ensemble table.

tensemble = readall(wensemble)

tensemble=16×4 table
 Vibration Tacho Data_Mean faultCode
 __________________ __________________ __________ _________

 {6000x1 timetable} {6000x1 timetable} 0.021809 0
 {6000x1 timetable} {6000x1 timetable} -0.0092964 1
 {6000x1 timetable} {6000x1 timetable} -0.46431 1
 {6000x1 timetable} {6000x1 timetable} 0.4922 1
 {6000x1 timetable} {6000x1 timetable} 0.3923 1
 {6000x1 timetable} {6000x1 timetable} -0.12383 1
 {6000x1 timetable} {6000x1 timetable} 0.42548 1
 {6000x1 timetable} {6000x1 timetable} -0.4598 1
 {6000x1 timetable} {6000x1 timetable} 0.062685 0
 {6000x1 timetable} {6000x1 timetable} 0.059155 0
 {6000x1 timetable} {6000x1 timetable} 0.037965 0
 {6000x1 timetable} {6000x1 timetable} 0.53982 1
 {6000x1 timetable} {6000x1 timetable} 0.52377 1
 {6000x1 timetable} {6000x1 timetable} 1.0357 1
 {6000x1 timetable} {6000x1 timetable} 1.0592 1

 workspaceEnsemble

2-85

 {6000x1 timetable} {6000x1 timetable} -0.94084 1

The table includes the original signals and the new feature.

See Also
Apps
Diagnostic Feature Designer

Functions
findIndex | read | readFeatureTable | readMember | readMemberData | readall | reset |
writeMember | writeToLastMemberRead

Objects
fileEnsembleDatastore | simulationEnsembleDatastore

Topics
“Condition Indicators for Monitoring, Fault Detection, and Prediction”
“Automatic Feature Extraction Using Generated MATLAB Code”
“Anatomy of App-Generated MATLAB Code”

Introduced in R2020a

2 Objects

2-86

	Functions
	approximateEntropy
	bearingFaultBands
	bhattacharyyaDistance
	compare
	correlationDimension
	correlationWeightedScore
	Diagnostic Feature Designer
	effectivefs
	Estimate Approximate Entropy
	Estimate Correlation Dimension
	Estimate Lyapunov Exponent
	Extract Spectral Features
	faultBandMetrics
	faultBands
	findIndex
	fit
	frameintervals
	gearConditionMetrics
	gearMeshFaultBands
	generateSimulationEnsemble
	joindata
	loadRULModelForCoder
	lyapunovExponent
	monotonicity
	phaseSpaceReconstruction
	plot
	predictRUL
	prognosability
	read
	readFeatureTable
	readFrameIntervals
	readMember
	readMemberData
	readState
	Reconstruct Phase Space
	refresh
	relativeEntropy
	restart
	restoreState
	saveRULModelForCoder
	subset
	tfmoment
	tfsmoment
	tftmoment
	time2num
	trendability
	tsadifference
	tsaregular
	tsaresidual
	update
	writeMember
	writeToLastMemberRead

	Objects
	covariateSurvivalModel
	exponentialDegradationModel
	fileEnsembleDatastore
	hashSimilarityModel
	linearDegradationModel
	pairwiseSimilarityModel
	reliabilitySurvivalModel
	residualSimilarityModel
	simulationEnsembleDatastore
	workspaceEnsemble

